Short Communication

The Common D302H Variant of CASP8 Is Associated with Risk of Glioma

Lara Bethke,1 Kate Sullivan,1 Emily Webb,1 Anne Murray,1 Minouk Schoemaker,2 Anssi Auvinen,3,4 Anne Kiuru,3 Tiina Salminen,3,4 Christoffer Johansen,5 Helle Collatz Christensen,5 Kenneth Muir,6 Patricia McKinney,7 Sarah Hepworth,7 Polyxeni Dimitropoulou,6 Artilaya Lophatananon,6 Maria Feychtling,8 Stefan Lönn,9 Anders Ahlbom,8 Beatrice Malmer,10 Roger Henriksson,10 Anthony Swerdlow,2 and Richard Houlston1

1Section of Cancer Genetics and Section of Epidemiology, Institute of Cancer Research, Sutton, Surrey, United Kingdom; 2Department of Epidemiology, Tampere School of Public Health, University of Tampere, Tampere, Finland; 3Department of Research and Environmental Surveillance, Radiation and Nuclear Safety Authority, Helsinki, Finland; 4Institute of Cancer Epidemiology, Danish Cancer Society, Copenhagen, Denmark; 5Division of Epidemiology and Public Health, Umeå University, Umeå, Sweden; 6Division of Epidemiology, Institute of Environmental Medicine and Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; and 7Department of Radiation Sciences, Umeå University, Umeå, Sweden

Abstract

Caspase 8 (CASP8) is a key regulator of apoptosis or programmed cell death, and, hence, a defense against cancer. We tested the hypothesis that the CASP8 polymorphism D302H influences risk of glioma through analysis of five series of glioma case patients and controls ($n = 1,005$ and 1,011, respectively). Carrier status for the rare allele of D302H was associated with a 1.37-fold increased risk (95% confidence interval, 1.10-1.70; $P = 0.004$). The association of CASP8 D302H with glioma risk indicates the importance of inherited variation in the apoptosis pathway in susceptibility to this form of primary brain tumor. (Cancer Epidemiol Biomarkers Prev 2008;17(4):987–9)

Introduction

Glioma accounts for ~80% of malignant primary brain tumors (1). The rare susceptibility syndromes neurofibromatosis, tuberous sclerosis, retinoblastoma, Li-Fraumeni, Turcot’s, and Gorlin’s (1, 2) do not however account for the 2-fold familial risk (1, 3). Much of this genetic risk is likely to be explained by combinations of low penetrance variants, some of which may be common and, hence, detectable through association analyses. Caspase 8 (CASP8) is a regulator of apoptosis, an essential defense mechanism against hyperproliferation and malignancy. Hypermethylation of CASP8 has been linked with glioblastoma multiforme relapse (4), suggesting that CASP8 may have a role in the development of glioma. Recently, polymorphic variation in CASP8 has been reported to influence the risk of a number of cancers (5, 6). We tested the hypothesis that the single nucleotide polymorphism rs1045485 in CASP8, which generates the substitution D302H, influences glioma risk.

Materials and Methods

Our study was based on five case control studies that contributed to the Interphone Study, an international multicenter epidemiologic case control study of primary brain tumors coordinated by the IARC (7). Cases had primary gliomas [International Classification of Diseases (ICD), 10th revision, code C71; ICD-O, 2nd ed., codes 9380-9384, 9390-9411, 9420-9451, 9505] and were ages 18 to 69 y. Controls were randomly selected from population registers or general practitioner records. Eight individuals were excluded from analysis due to non-European ethnicity or unclear identity.

Received 11/16/07; revised 1/17/08; accepted 1/22/08.

Grant support: Cancer Research UK. The Interphone Study was supported by the European Commission Fifth Framework Program ‘Quality of Life and Management of Living Resources’ (Contract QLK4-CT-1999-01560) and the International Union against Cancer (RCA/01/08). The International Union against Cancer received funds for this study from the Mobile Manufacturers’ Forum and the Global System for Mobile Communications Association. Provision of funds to the Interphone study investigators via International Union against Cancer was governed by agreements that guaranteed Interphone’s complete scientific independence. These agreements are publicly available at http://www.iarc.fr/ENG/Units/RCAd.html. Additional support was given to the Danish partner by the Danish Cancer Society. The Finnish partner received further financing from the Emil Aaltonen Foundation, The Swedish Research Council, The Swedish Cancer Society, and the Cancer Foundation of Northern Sweden. The United Kingdom Southeast and Northern centers were also supported by the Mobile Telecommunications and Health Research Program and the United Kingdom North by the Health and Safety Executive, Department of Health and Safety Executive, and the United Kingdom Network Operators (O2, Orange, T-Mobile, Vodafone, and 3). The views expressed in the publication are those of the authors and not necessarily those of the funding bodies.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked ‘advertisement’ in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Requests for reprints: Richard Houlston, Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK. Phone: 44-0-208-722-4175; Fax: 44-0-208-722-4359. E-mail: richard.houlston@icr.ac.uk

Copyright © 2008 American Association for Cancer Research.

doi:10.1158/1055-9965.EPI-07-2807
The study was approved by relevant ethics committees in accordance with the tenets of the Declaration of Helsinki, and informed consent was obtained from subjects.

The distributions by sex and age of the case patients and controls in each of the five case-control series were approximately frequency matched and were not statistically different [specifically, United Kingdom North cases (230 male; 140 female; mean age at diagnosis, 49 y; SD, 12; controls: 231 male; 138 female; mean age, 51 y; SD, 11), United Kingdom Southeast cases (140 male; 71 female; mean age at diagnosis, 42 y; SD, 11; controls: 142 male; 72 female; mean age, 47 y; SD, 9), Sweden cases (121 male; 76 female; mean age at diagnosis, 50 y; SD, 13; controls: 121 male; 76 female; mean age, 52 y; SD, 12), Denmark cases (71 male; 57 female; mean age at diagnosis, 48 y; SD, 12; controls: 74 male; 57 female; mean age, 51 y; SD, 12), and Finland cases (56 male; 43 female; mean age at diagnosis, 48 y; SD, 12; controls: 37 male; 63 female; mean age, 53 y; SD, 12)]. Of the 1,005 cases, 451 had been diagnosed with glioblastoma (ICD10 codes 9440-1), 329 with astrocytoma (ICD10 codes 9400-30), 106 with oligodendroglioma (ICD10 codes 9450-1), and 119 with other glioma subtypes.

Genotyping was done using the Illumina customized GoldenGate Array (Illumina, Inc.); details available on request. Statistical analyses were undertaken using R11 and STATA Software (StataCorp). Due to low frequencies for the rare homozygote genotype, we combined the rare homozygote and heterozygote genotypes. As age and sex did not significantly alter risk estimates, we restricted adjustment to study centers. Unconditional logistic regression was used to calculate odds ratio (OR) and associated 95% confidence intervals (CI), and overall results for all five studies were calculated using logistic regression adjusted for study center and the Mantel-Haenszel method.

Results and Discussion

Of the 2,024 DNA samples submitted for genotyping, genotypes were obtained for 957 of 1,005 cases (95.2%) and 976 of 1,013 controls (96.3%). There was no evidence of any systematic bias in genotyping as single nucleotide polymorphism call rates were not significantly different between all cases and controls or between each of the 5 case control studies (93.5%-97.3%). Furthermore, there was no evidence of population stratification as the genotype distribution satisfied the criterion for Hardy-Weinberg equilibrium in each control series.

Possession of 302H was associated with risk of glioma in the five case control series, albeit nonsignificantly in four (Fig. 1). When the data were combined, carrier status for 302H was significantly associated with glioma risk (OR, 1.37; 95% CI, 1.10-1.70; \(P = 0.004 \); results were identical using logistic regression adjusting for study center or Mantel-Haenszel method). There was no evidence of heterogeneity between studies (\(P_{\text{het}} = 0.59; I^2 = 0.0\% \); Fig. 1). Sequentially omitting each of the case control series allowed us to determine the influence of individual series on the pooled estimate and served as a measure of the robustness of findings. Notably, after omitting data from the Finnish study, the risk of glioma associated with carrier status for 302H remained significant (OR, 1.31; 95% CI, 1.05-1.64; \(P = 0.018 \)).

To our knowledge, only one previous study, based on analysis of 382 cases and 550 controls, has examined the association between D302H and risk of glioma (8).

11http://www.r-project.org/
Although nonsignificant, a higher frequency of the 302H genotype in cases was observed (Fig. 1). This finding is consistent with our results, providing increased support for the tenet that variation in CASP8 defined by D302H is a determinant of risk. On the basis of our data and the earlier study, 302H is associated with a 1.31-fold increased risk of glioma (95% CI, 1.09-1.56; \(P = 0.003 \); \(P_{\text{het}} = 0.65 \); \(I^2 = 0.0\% \); Fig. 1).

Our observation that this single nucleotide polymorphism influences risk of glioma invites speculation that the variant has a generic effect on cancer susceptibility. In contrast to breast cancer, where the 302H allele is protective (5), in glioma, it seems to be associated with an elevated risk. The cell lineage of glioma is, however, embryologically different from breast cancer. Nongenetic factors are likely to have entirely different mechanisms affecting tumorigenesis in concert with genotype; such differences have recently been documented for the CHEK2 I157T variant with the rare allele, conferring an elevated breast cancer risk but a protective effect on lung cancer (9). Although D302H may be in linkage disequilibrium with an unknown causative variant, the polymorphic site is evolutionarily conserved between mouse and man, suggesting a direct effect on CASP8. As the D302H change localizes to the external surface of the expressed protein, it is conceivable that it influences autoprocessing of procaspase-8 molecules or CASP8 interactions with the antiapoptotic FADD-like apoptosis regulator.

Our observations strengthen the hypothesis that low penetrance variants contribute to the inherited risk of glioma.

Acknowledgments

We thank all the patients and individuals for their participation, the clinicians and other hospital staff, cancer registries, and study staff, and the funding bodies who contributed to the blood sample and data collection for this study and who are listed in our previous publications.

References

The Common D302H Variant of CASP8 Is Associated with Risk of Glioma

Lara Bethke, Kate Sullivan, Emily Webb, et al.

Updated version
Access the most recent version of this article at:
http://cebp.aacrjournals.org/content/17/4/987

Cited articles
This article cites 8 articles, 4 of which you can access for free at:
http://cebp.aacrjournals.org/content/17/4/987.full#ref-list-1

Citing articles
This article has been cited by 12 HighWire-hosted articles. Access the articles at:
http://cebp.aacrjournals.org/content/17/4/987.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.