Null Results in Brief

Association between Genetic Polymorphisms of Macrophage Scavenger Receptor 1 Gene and Risk of Prostate Cancer in the Health Professionals Follow-up Study

Yen-Ching Chen,1,5 Edward Giovannucci,1,2,3 Peter Kraft,4 and David J. Hunter1,2,3

1Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School; Departments of Nutrition and Epidemiology and 2Program in Molecular and Genetic Epidemiology, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts; and 3Research Center for Genes, Environment, and Human Health, and Graduate Institute of Epidemiology, College of Public Health, National Taiwan University, Taipei, Taiwan, Republic of China

Abstract

Background: Macrophage scavenger receptor 1 (MSR1) is involved in chronic inflammation, which is a risk factor for prostate cancer. Association studies assessing the relationship between sequence variants of MSR1 and prostate cancer are inconsistent. We hypothesized that sequence variants of MSR1 were associated with prostate cancer risk.

Methods: In a nested case-control design within the Health Professionals Follow-up Study, we identified 700 participants with prostate cancer diagnosed after they had provided a blood specimen in 1993 and before January 2000. Controls were 700 age-matched men without prostate cancer who had had a prostate-specific antigen test after providing a blood specimen. We genotyped three common (>5%) single nucleotide polymorphisms (SNP) that have been reported previously to be associated with risk of prostate cancer.

Results: None of these MSR1 SNPs nor estimated haplotypes were associated with prostate cancer risk (P for the global test for haplotypes = 0.89). These MSR1 SNPs also did not appear to be associated with higher-grade or advanced-stage prostate cancer.

Conclusion: The association between these sequence variants of MSR1 and the risk of prostate cancer was null. Further study of aggressive prostate cancer may be warranted, as we had limited power to assess these. (Cancer Epidemiol Biomarkers Prev 2008;17(4):1001–3)

Macrophage scavenger receptor 1 (MSR1) is located on chromosome 8p22 (1, 2) and was highly expressed in the kidney, colon, prostate, breast, and heart.3 Its isoforms are involved in host defense (inflammation, innate and adaptive immunity; ref. 3). A recent meta-analysis (4) reported five common sequence variants (PRO3, INDEL1, IVS5-59, P275A, and INDEL7) moderately associated with prostate cancer risk. Studies reported after the previous meta-analysis showed inconsistent findings for P275A (5, 6). Abundant evidence supports a possible link between chronic intraprostatic inflammation and risk of prostate cancer (7). MSR1 plays a role in the innate immune response to pathogen infection and therefore may relate to prostate cancer risk.

The characteristics of the study population are available elsewhere (8). The three single nucleotide polymorphisms (SNP) in MSR1 associated previously with risk of prostate cancer were genotyped (Table 1). SNP IVS5-59 was out of Hardy-Weinberg equilibrium among controls (P = 0.01). The internal blinded quality-control specimens showed no evidence of genotyping error. Therefore, we retained IVS5-59 in the statistical analyses.

The three single nucleotide polymorphisms (SNP) in MSR1 associated previously with risk of prostate cancer were genotyped (Table 1). SNP IVS5-59 was out of Hardy-Weinberg equilibrium among controls (P < 0.01) but not among cases (P = 0.11). The internal blinded quality-control specimens showed no evidence of genotyping error. Therefore, we retained IVS5-59 in the statistical analyses.

The three common haplotypes were associated with prostate cancer risk (Table 2). The P value for the global test comparing the case and control distribution of the three common haplotypes was 0.89. Statistical analyses showed that none of the three common SNPs or their haplotypes was associated with prostate cancer risk (Table 2). Prostate cancer family history, body mass

Received 8/12/07; revised 10/26/07; accepted 2/8/08.

Grant support: NIH grants U01 CA98233 and CA55075.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Requests for reprints: Yen-Ching Chen, Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115. Phone: 617-525-2279; Fax: 617-525-2008.

E-mail: karen.chen@channing.harvard.edu

Copyright © 2008 American Association for Cancer Research.

doi:10.1158/1055-9965.EPI-07-0744

Cancer Epidemiol Biomarkers Prev 2008;17(4). April 2008

http://genome.ucsc.edu/cgi-bin/hgGene?hgsid=66892801&db=hg16&hgg_gene=D90187&hgg_chrom=chr8&hgg_start=15977333&hgg_end=16060514

Downloaded from cebp.aacrjournals.org on April 13, 2017. © 2008 American Association for Cancer Research.
Table 1. Characteristics of MSR1 SNPs

<table>
<thead>
<tr>
<th>SNP</th>
<th>Nucleotide change</th>
<th>Location</th>
<th>rs #</th>
<th>Controls Minor allele frequency (%)</th>
<th>Hardy-Weinberg equilibrium P</th>
<th>Cases Minor allele frequency (%)</th>
<th>Hardy-Weinberg equilibrium P</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRO3</td>
<td>A→G</td>
<td>Promoter</td>
<td>rs433235</td>
<td>8.8</td>
<td>0.08</td>
<td>8.4</td>
<td>0.25</td>
</tr>
<tr>
<td>IVS5-59</td>
<td>C→A</td>
<td>Intron 5</td>
<td>N/A</td>
<td>4.9</td>
<td><0.01</td>
<td>5.1</td>
<td>0.11</td>
</tr>
<tr>
<td>P275A</td>
<td>C→G</td>
<td>Exon 6</td>
<td>rs3747531</td>
<td>5.1</td>
<td>0.95</td>
<td>6.2</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Table 2. OR between MSR1 SNPs and haplotypes and the risk of prostate cancer

<table>
<thead>
<tr>
<th>SNP</th>
<th>Prevalence among controls, % (95% CI)</th>
<th>Global test P = 0.89</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 copies</td>
<td>1 copy</td>
</tr>
<tr>
<td>PRO3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVS5-59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P275A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: From left to right, the haplotypes above were composed of PRO3, IVS5-59, and P275A.

*P tested the null hypothesis: OR1 copy = OR2 copies = 1.
rise to the cases and were composed of 94% Caucasians. Results were similar after the exclusion of non-Caucasians.

Chronic intraprostatic inflammation has been reported to increase the risk of prostate cancer (7). Our previous study (8) showed that variants in the innate immune gene TLR4 played a role in prostate cancer susceptibility. However, in our study and most previous studies, no association between sequence variants of MSR1 and prostate cancer risk has been observed.

Acknowledgments
We thank Monica Coleman for assistance, Pati Soule and Ana-Tereza Andrade for DNA sample extraction, and the Partners High-Throughput Genotyping Center (Dr. David Kwiatkowski, Alison Brown, and Maura Regan) for genotyping.

References
Association between Genetic Polymorphisms of Macrophage Scavenger Receptor 1 Gene and Risk of Prostate Cancer in the Health Professionals Follow-up Study

Yen-Ching Chen, Edward Giovannucci, Peter Kraft, et al.

Updated version
Access the most recent version of this article at:
http://cebp.aacrjournals.org/content/17/4/1001

Cited articles
This article cites 21 articles, 6 of which you can access for free at:
http://cebp.aacrjournals.org/content/17/4/1001.full.html#ref-list-1

Citing articles
This article has been cited by 2 HighWire-hosted articles. Access the articles at:
/content/17/4/1001.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.