Short Communication

Insulin-Like Growth Factor Axis and Oncogenic Human Papillomavirus Natural History

Tiffany G. Harris,1 Robert D. Burk,1 Herbert Yu,2 Howard Minkoff,3 L. Stewart Massad,4 D. Heather Watts,5 Ye Zhong,1 Stephen Gange,6 Robert C. Kaplan,1 Kathryn Anastos,1 Alexandra M. Levine,7 Michael Moxley,8 Xiaonan Xue,1 Melissa Fazzari,1 Joel M. Palefsky,9 and Howard D. Strickler1

1Albert Einstein College of Medicine, Bronx, New York; 2Yale University, New Haven, Connecticut; 3Maimonides Medical Center and State University of New York Downstate, Brooklyn, New York; 4Southern Illinois University School of Medicine, Springfield, Illinois; 5National Institute of Child Health and Human Development, NIH, Bethesda, Maryland; 6Johns Hopkins University, Baltimore, Maryland; 7University of Southern California, Los Angeles, California; 8University of Virginia, Charlottesville, Virginia; and 9University of California at San Francisco, San Francisco, California

Abstract

High serum levels of insulin-like growth factor-I (IGF-I) are reported to be a risk factor for several common cancers, and recent cross-sectional data suggest a possible additional association of IGF-I with cervical neoplasia. To prospectively assess whether circulating IGF-I levels influence the natural history of oncogenic human papillomavirus (HPV), the viral cause of cervical cancer, we conducted a pilot investigation of 137 women who underwent semiannual type-specific HPV DNA PCR testing and cervical cytology. Total IGF-I and IGF binding protein-3 (IGFBP-3), the most abundant IGFBP in circulation, were measured using baseline serum specimens. Having a high IGF-I/IGFBP-3 ratio was associated with increased persistence of oncogenic HPV infection (that is, a lower rate of clearance; adjusted hazard ratio (AHR), 0.14; 95% confidence interval (95% CI), 0.04-0.57), whereas IGFBP-3 was inversely associated with both the incident detection of oncogenic HPV (AHR, 0.35; 95% CI, 0.13-0.93) and the incidence of oncogenic HPV-positive cervical neoplasia (that is, squamous intraepithelial lesions at risk of progression; AHR, 0.07; 95% CI, 0.01-0.66). These prospective data provide initial evidence that the IGF axis may influence the natural history of oncogenic HPV.

(Cancer Epidemiol Biomarkers Prev 2008;17(1):245–8)

Introduction

Insulin-like growth factor-I (IGF-I), a peptide hormone, has mitogenic and antiapoptotic activities. IGF-I mediates many of the effects of growth hormone, and most cells throughout the body express the IGF-I receptor.

Received 7/29/07; revised 9/26/07; accepted 10/23/07.

Grant support: HPV DNA testing is funded through R01-CA-085179. All specimens and other data in this study were collected by the Women’s Intergroup HPV Study Collaborative Study Group with centers (principal investigators) at New York City/Bronx Consortium (Kathryn Anastos, M.D.), Brooklyn, NY (Howard Minkoff, M.D.), Washington, DC Metropolitan Consortium (Mary Young, M.D.), The Corine Wolfe Study Consortium of Northern California (Ruth Greenblatt, M.D.), Los Angeles County/Southern California Consortium (Alexandra Levine, M.D.), Chicago Consortium (Mardge Cohen, M.D.), and Data Coordinating Center (Stephen Gange, Ph.D.). The Women’s Intergroup HPV Study is funded by the National Institute of Allergy and Infectious Diseases with supplemental funding from the National Cancer Institute and the National Institute on Drug Abuse (U10-CA-15004, U10-CA-31634, U10-CA-34994, U10-CA-34998, U01-CA-134993, and U01-CA-42590). Funding is also provided by the National Institute of Child Health and Human Development (U01-HD-32632) and the National Center for Research Resources (M01-RR-00071, M01-RR-00078, and M01-RR-00083).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Requests for reprints: Howard D. Strickler, Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Box 1308, Bronx, NY 10461. Phone: 718-430-4055. E-mail: strickle@aecom.yu.edu

Copyright © 2008 American Association for Cancer Research.

doi:10.1158/1055-9965.EPI-07-0686
IGFBP-3 (8). However, two other cross-sectional studies found conflicting results, that is, an inverse association between IGF-I and cervical neoplasia (9, 10).

Prospective studies may be essential to the accurate assessment of the IGF axis and its effects on oncogenic HPV and cervical neoplasia [that is, squamous intraepithelial lesions (SIL)], helping to distinguish these effects from their converse (the effect of HPV and neoplasia on the IGF axis; that is, reverse causality). We, therefore, conducted a pilot investigation to evaluate the associations of serum IGF-I and IGFBP-3 levels with incident detection and persistence of oncogenic HPV as well as the development of SIL. Based on the associations of IGF-I with other epithelial tumors and the proliferative effects of IGF-I on cervical cancer cells in vitro, we hypothesized that IGF-I would have a positive association and IGFBP-3 would have a negative association with HPV infection and SIL.

Materials and Methods

Subjects and Specimens. Between October 1994 and November 1995, 568 HIV-seronegative women were enrolled as a comparison group for HIV-seropositive subjects in the Women’s Interagency HIV Study through similar clinical and outreach sources in six U.S. cities (11). All subjects provided informed consent and each local institutional review board provided approval for the study. On an ongoing basis, the Women’s Interagency HIV Study conducts semiannual study visits during which serum is obtained, and a cervicovaginal lavage specimen is collected for HPV DNA testing followed by a Papanicolaou smear (12-14). All Papanicolaou smears were interpreted centrally using the 1991 Bethesda System criteria (15).

For the current study, 150 HIV-seronegative women were randomly selected for IGF-I and IGFBP-3 testing from the HIV-seronegative cohort; subjects who missed sequential visits during the first 2 years of follow-up were excluded. Of those selected, 146 women had baseline serum specimens available for testing. Nine reported having had a hysterectomy before enrollment. Thus, 137 HIV-seronegative women contributed data to our analysis. HIV-seropositive women were not studied in this initial pilot investigation because of concerns regarding confounding (that is, IGF-I and IGFBP-3 may be associated with both cervical HPV and HIV disease), which would have complicated the interpretation of the data.

Laboratory Methods. HPV DNA testing was conducted using a well-established PCR assay that employed MY09/MY11/HMB01 L1 consensus primers as reported previously (12-14). Amplification of a 268-bp cellular β-globin DNA fragment was included in each assay as an internal control. Following amplification, the presence of HPV DNA sequences was assessed using filters individually hybridized with biotinylated oligonucleotide probes for >35 specific HPV types as well as a general probe mixture able to detect most anogenital HPV DNA types. HPV types 16/18/31/33/35/39/45/51/52/56/58/59/68/73/82 were considered oncogenic (16-18). All other HPV detected were considered nononcogenic.

All serum specimens were stored at -70°C until tested for total IGF-I and IGFBP-3 levels using enzyme-linked immunosorbent assays from DSL, in accordance with manufacturer’s recommendations. We note that in HIV-seronegative women IGF-I and IGFBP-3 levels are known to be stable for periods measured in years (19), and it is common practice in prospective cancer epidemiology studies to use a single baseline (time-independent) value to assess risk of disease during as much as 5 to 10 or more years of follow-up (1).

Statistical Methods. IGF-I and IGFBP-3 data were initially divided into quartiles, in keeping with what has commonly been done in prior epidemiologic studies of IGF-I and cancer (the serocutoffs are shown in the footnote to Table 1; ref. 1). Because of the small size of this pilot study, however, we dichotomized these categorical data into high (quartiles 2-4) and low (quartile 1) values. To measure the associations of total IGF-I and IGFBP-3 with prevalent detection of oncogenic HPV DNA and SIL, we used multivariate logistic regression models that incorporated generalized estimating equations to adjust the SEs for repeated measures (that is, across multiple visits and multiple HPV types) as described previously (13, 14). IGF-I and IGFBP-3 levels remained stable for periods measured in years (see Laboratory Methods) and were incorporated as time-independent variables in our analyses. To study incident

Table 1. Associations of total IGF-I, IGFBP-3, and IGF-I/IGFBP-3 molar ratio with the prevalence, incident detection, and time to clearance of oncogenic HPV and the prevalence and incidence of SIL in oncogenic HPV-positive women (oncogenic HPV-positive SIL)

<table>
<thead>
<tr>
<th></th>
<th>Incident detection of oncogenic HPV*</th>
<th>Clearance of oncogenic HPV*</th>
<th>Prevalence of oncogenic HPV I</th>
<th>Incident detection of oncogenic HPV-positive SIL*</th>
<th>Prevalence of oncogenic HPV-positive SIL I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total IGF-I</td>
<td>1.08 (0.44-2.69)</td>
<td>0.39 (0.09-1.64)</td>
<td>1.68 (0.75-3.79)</td>
<td>1.22 (0.11-15.72)</td>
<td>2.37 (0.33-17.07)</td>
</tr>
<tr>
<td>IGFBP-3</td>
<td>0.35 (0.13-0.93)</td>
<td>0.72 (0.34-1.53)</td>
<td>0.63 (0.24-1.61)</td>
<td>0.07 (0.01-0.66)</td>
<td>0.61 (0.09-4.15)</td>
</tr>
<tr>
<td>IGF-I/IGFBP-3</td>
<td>1.58 (0.63-3.80)</td>
<td>0.14 (0.04-0.57)</td>
<td>1.04 (0.53-2.03)</td>
<td>0.81 (0.09-7.34)</td>
<td>1.93 (0.47-7.98)</td>
</tr>
</tbody>
</table>

NOTE: Number of events: prevalent oncogenic HPV (94), incident oncogenic HPV (40), oncogenic HPV clearance (55 including 18 incident infections and 37 prevalent infections), prevalent oncogenic SIL (18), and incident oncogenic SIL (6). Quartile serocutoffs for IGF-I were 174, 219, and 275 ng/mL. Serocutoffs for IGFBP-3 were 2,497, 3,094, and 3,661 ng/mL.

*HR comparing quartiles 2 to 4 with quartile 1 (95% CI) adjusted for age (≥29, 30-39, and ≥40 y), race (White, Black, and Hispanic or other), and number of male sexual partners within the last 6 months (0, 1 and married, 1 and single, and ≥2).

1 Odds ratio comparing quartiles 2 to 4 with quartile 1 (95% CI) adjusted for age (≥29, 30-39, and ≥40 y), race (White, Black, and Hispanic or other), and number of male sexual partners within the last 6 months (0, 1 and married, 1 and single, and ≥2).

1 P < 0.05.

1 Ratio of total IGF-I to IGFBP-3.
the same model had no effect on the above results. For nononcogenic HPV, we observed only one significant finding, an unexpected inverse association of IGF-I (odds ratio, 0.50; 95% CI, 0.28-0.90) with prevalent detection of a nononcogenic HPV type. No other associations of IGF-I and IGFBP-3 with nononcogenic HPV approximated statistical significance, although the number of events was similar to the number observed with oncocgenic HPV (data not shown).

Discussion

The findings of this small pilot study are consistent with our hypothesis that the IGF axis may influence the natural history of HPV infection and the development of cervical neoplasia. Specifically, women with high serum IGFBP-3 levels had significantly lower rates of incident oncocgenic HPV detection, and lower incidence of oncocgenic HPV-positive SIL, than women with low serum IGFBP-3 levels. The IGF-I/IGFBP-3 molar ratio, in contrast, was positively associated with persistence of oncocgenic HPV infection. We note that these prospective data are in keeping with two prior cross-sectional studies. The first study reported that cervical neoplasia was positively associated with the IGF-I/IGFBP-3 ratio and total IGF-I (7), and the second study reported that cervical neoplasia was positively associated with IGF-II (a related growth factor) but inversely associated with IGFBP-3 (8). Although in the current pilot investigation none of the additional associations of oncocgenic HPV with IGF-I or IGFBP-3 were statistically significant, they were fairly similar to the above: total IGF-I had a nonsignificantly positive association with prevalence of oncocgenic HPV and oncocgenic HPV-positive SIL, whereas high IGFBP-3 had a nonsignificant inverse association with these same endpoints.

Laboratory studies have also reported data consistent with a positive effect of IGF-I and an inhibitory effect of IGFBP-3 on cervical tumorigenesis. For example, in vitro data indicate that the inhibitory effects of IGFBP-3 are likely due to both its sequestration of IGF-I and IGF-I-independent effects; specifically, IGFBP-3 can bind proteins involved in cell cycle in the nucleus (21) and has antiproliferative (22-24) and direct proapoptotic activities (25-28). Thus, high IGFBP-3 levels could lead to less replication and/or greater loss of oncocgenic HPV infected cells (that is, to levels below the threshold of detection). A positive association of IGF-I/IGFBP-3 molar ratio with persistence of oncocgenic HPV infection was also expected. This ratio is used by some investigators as an indirect measure of free (presumably bioactive) IGF-I levels; indeed, in a recent study of postmenopausal women, we found a modest correlation of ~20% between the total IGF-I/IGFBP-3 ratio and free IGF-I levels. Therefore, the positive association of total IGF-I/IGFBP-3 ratio with persistent infection by oncocgenic HPV could reflect the antiapoptotic effects of free/bioactive IGF-I. Alternatively, an association of IGF-I/IGFBP-3 molar ratio with persistent oncocgenic HPV infection could reflect the relative balance of the competing effects of IGF-I (mitogenic/antiapoptotic) and IGFBP-3 (antimitotic/proapoptotic) on infected cells.

10 H.D. Strickler, personal communication.
Two additional cross-sectional studies found inverse associations of IGF-I with the presence of cervical neoplasia (9, 10), although in their careful discussion Schaffer et al. (the most recent of the two studies) point to the difficulty in explaining such results from a biological perspective (10). There was also one inverse association with IGF-I in our study; high total IGF-I was associated with lower (not higher) prevalence of nononcogenic HPV. However, no other associations of IGF-I or IGFBP-3 with nononcogenic HPV approximated significance nor was the inverse association we observed actually consistent with Schaffer et al. Their study showed inverse associations of IGF-I with two oncogenic (in contrast to nononcogenic) HPV. Therefore, although we cannot exclude the possibility of different associations of the IGF axis with oncogenic and nononcogenic HPV, given the small size of this pilot study, we feel the inverse association of nononcogenic HPV detection with IGF-I was most likely a spurious finding.

Taken as a whole, this small prospective study provides initial evidence that the IGF axis may affect the natural history of oncogenic HPV. A larger, more comprehensive prospective investigation is indicated to better clarify these relationships, including any potential HPV type-specific differences in the effects of IGF-I and IGFBP-3. If specific components of the IGF axis can affect the incidence and persistence of oncogenic HPV, then the IGF axis may be a viable target for the development of novel therapeutic interventions to disrupt this cancer pathway.

References
