Hypermethylation of the AKAP12 Promoter is a Biomarker of Barrett’s-Associated Esophageal Neoplastic Progression

Zhe Jin,1 James P. Hamilton,1 Jian Yang,1 Yuriko Mori,1 Alexandru Olaru,1 Fumiaki Sato,1 Tetsuo Ito,1 Takatsugu Kan,1 Yulan Cheng,1 Bogdan Paun,1 Stefan David,1 David G. Beer,2 Rachana Agarwal,1 John M. Abraham,1 and Stephen J. Meltzer1

1Division of Gastroenterology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland and 2Division of General Thoracic Surgery, Department of Surgery, University of Michigan School of Medicine, Ann Arbor, Michigan

Abstract

The A-kinase anchoring protein 12 (AKAP12) is a kinase scaffold protein with known tumor suppressor activity. Recently, AKAP12 promoter hypermethylation was reported in gastric and colorectal cancers. We examined AKAP12 promoter hypermethylation using real-time methylation-specific PCR in 259 human esophageal tissues. AKAP12 hypermethylation showed highly discriminative receiver-operator characteristic (ROC) curve profiles, clearly distinguishing esophageal adenocarcinoma (EAC) from esophageal squamous cell carcinoma and normal esophagus (P < 0.0001). AKAP12-normalized methylation values were significantly higher in Barrett’s metaplasia (BE), dysplastic Barrett’s, and EAC than in normal esophagus (P < 0.000001). AKAP12 hypermethylation frequency was zero in normal esophagus but increased early during neoplastic progression, to 38.9% in BE from patients with Barrett’s alone, 52.5% in dysplastic Barrett’s metaplasia, and 52.2% in EAC. AKAP12 hypermethylation levels were significantly higher in normal esophageal epithelia from patients with EAC (mean = 0.00082) than in normal esophagi from patients without Barrett’s or esophageal cancer (mean = 0.00007; P = 0.006). There was a significant correlation between AKAP12 hypermethylation and BE segment length, a known clinical neoplastic progression risk factor. In contrast, only 2 (7.7%) of 26 esophageal squamous cell carcinomas exhibited AKAP12 hypermethylation. Treatment of BIC and OE33 EAC cells with 5-aza-2’-deoxycytidine reduced AKAP12 methylation and increased AKAP12 mRNA expression. AKAP12 mRNA levels in EACs with unmethylated AKAP12 (mean = 0.1663) were higher than in EACs with methylated AKAP12 (mean = 0.0668). We conclude that promoter hypermethylation of AKAP12 is a common, tissue-specific event in human EAC, occurs early during Barrett’s- associated esophageal neoplastic progression, and is a potential biomarker for the early detection of EAC.

Introduction

The A-kinase anchoring protein 12 (AKAP12; also known as Gravin, and its rodent orthologue src-suppressed C-kinase substrate, SSeCKS), a multivalent anchoring protein and an important regulator of the β2-adrenergic receptor complex, controls cell signaling, cell adhesion, mitogenesis and differentiation, and possesses tumor suppressor activity (1-5). The AKAP12 gene maps to chromosome 6q24-25.2, a locus that frequently contains deletions in human cancers (2, 6-8). Downregulation of AKAP12 expression has been reported in various human cancers, including those of the breast, prostate, ovary, stomach, and colon (8-12). It is now well-established that promoter hypermethylation correlates with silencing of gene transcription in cancers (13), including esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC; refs. 14, 15). Furthermore, there is a growing body of evidence showing that abnormal methylation of DNA is an early event in carcinogenesis and could serve as an early detection biomarker in cancer (13). Recently, AKAP12 promoter CpG island hypermethylation was reported in gastric and colorectal cancers, and it was shown that the demethylating agent 5-aza-2’-deoxycytidine (5-Aza-dC) reversed AKAP12 promoter hypermethylation and restored AKAP12 expression in colorectal and gastric cancer-derived cell lines (11, 12). Thus, it is clear that AKAP12 hypermethylation is involved in tumorigenesis in the human digestive tract; however, it is not known whether or at what neoplastic stage this epigenetic alteration contributes to human esophageal tumorigenesis.

Esophageal cancer ranks sixth among cancers worldwide, with 400,000 new cases diagnosed each year (16). This malignancy exists in two principal forms, each

Received 5/3/07; revised 7/16/07; accepted 10/25/07.
Grant support: NIH grants CA085069, CA001808, and CA106763 (S.J. Meltzer).
The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
Requests for reprints: Stephen J. Meltzer, Division of Gastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, 1803 East Jefferson Street, Room 112, Baltimore, MD 21224. Phone: 410-502-6071; Fax: 410-502-1329. E-mail: smeltzer@jhmi.edu
Copyright © 2008 American Association for Cancer Research. doi:10.1158/1055-9965.EPI-07-0407

Cancer Epidemiol Biomarkers Prev 2008;17(1). January 2008

Downloaded from cebp.aacrjournals.org on April 9, 2017. © 2008 American Association for Cancer Research.
Materials and Methods

Tissue Samples

The 259 specimens examined in the current study comprised 66 normal esophageal specimens [including 19 obtained from non-Barrett’s/non-esophageal cancer patients (NE), 20 from ESCC patients (NEcS), and 27 from EAC patients (NEcA)], 60 nondysplastic Barrett’s metaplasias (BE), including 36 obtained from patients with Barrett’s alone (Ba) and 24 from patients with Barrett’s accompanied by EAC (Bt),

<table>
<thead>
<tr>
<th>Table 1. Clinicopathologic characteristics and methylation status of AKAP12 in human esophageal tissues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical characteristics</td>
</tr>
<tr>
<td>--------------------------------</td>
</tr>
<tr>
<td>Histology</td>
</tr>
<tr>
<td>Normal esophagus</td>
</tr>
<tr>
<td>NE</td>
</tr>
<tr>
<td>NEcA</td>
</tr>
<tr>
<td>NEcS</td>
</tr>
<tr>
<td>Barrett’s metaplasia</td>
</tr>
<tr>
<td>Barrett’s from non-EAC patients</td>
</tr>
<tr>
<td>Barrett’s from EAC patients</td>
</tr>
<tr>
<td>Dysplasia in Barrett’s esophagus</td>
</tr>
<tr>
<td>Low-grade dysplasia</td>
</tr>
<tr>
<td>High-grade dysplasia</td>
</tr>
<tr>
<td>EAC</td>
</tr>
<tr>
<td>ESCC</td>
</tr>
<tr>
<td>Barrett’s segment</td>
</tr>
<tr>
<td>Short-segment (<3 cm)</td>
</tr>
<tr>
<td>Long-segment (>3 cm)</td>
</tr>
<tr>
<td>Stage of EAC patients</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>II</td>
</tr>
<tr>
<td>III</td>
</tr>
<tr>
<td>IV</td>
</tr>
<tr>
<td>Lymph node metastasis in EAC patients</td>
</tr>
<tr>
<td>Smoking status of EAC patients</td>
</tr>
<tr>
<td>Never</td>
</tr>
<tr>
<td>Current</td>
</tr>
<tr>
<td>Alcohol drinking status of EAC patients</td>
</tr>
</tbody>
</table>

Comparisons made with NE or NEcS.

Comparisons made with normal esophagus.

Comparisons made with ESCC.

^{*} Student’s t test.

^{i} Comparisons made with NE or NEcS.

^{3} Fisher’s exact test.

^{1} Kruskal-Wallis test.

*NE, normal esophagus from non-Barrett’s/cancer patients; NEcA, NE from EAC patients; NEcS, NE from ESCC patients; EAC, esophageal adenocarcinoma; ESCC, esophageal squamous cell carcinoma.

Comparisons made with NE or NEcS.

^{3} Comparisons made with normal esophagus.

^{1} K for independence test.
40 dysplastic Barrett’s specimens (including 19 low-grade and 21 high-grade dysplasias), 67 EACs, and 26 ESCCs. All patients provided written informed consent under a protocol approved by the Institutional Review Boards at the University of Maryland and Baltimore Veterans Affairs Medical Centers, where all esophagogastroduodenoscopies were performed. Biopsies were taken using a standardized biopsy protocol as previously described (15). Research tissues were obtained from grossly apparent Barrett’s epithelium or from mass lesions in patients manifesting these changes at endoscopic examination, and histology was confirmed using parallel aliquots taken from identical locations at endoscopy. All biopsy specimens were stored in liquid nitrogen before DNA extraction. Clinicopathologic characteristics are summarized in Table 1.

Cell Lines. Three EAC (BIC, OE33, and SEG) and nine ESCC (KYSE 110, 140, 180, 200, 220, 410, 450, 520, and 850) cell lines were obtained from collaborators at the University of Michigan (Dr. David Beer) and Kyoto University (Prof. Yutaka Shimada). These cells were cultured in 47.5% RPMI 1640, 47.5% F12 supplemented with 5% fetal bovine serum.

DNA and RNA Extraction. Genomic DNA and total RNA were extracted from biopsies and cultured cells using a DNeasy Tissue Kit (Qiagen) and TRIzol reagent (Invitrogen), respectively. DNA and RNA were stored at −80°C before analysis.

Bisulfite Treatment and Real-time Methylation-Specific PCR. DNA was treated with bisulfite to convert unmethylated cytosines to uracils prior to methylation-specific PCR, as described previously (12). The promoter methylation levels of AKAP12 were determined by real-time quantitative methylation-specific PCR with the ABI 7700 Sequence Detection System (Applied Biosystems), using primers and probes as described previously (12). Normalized methylation value (NMV) was defined as follows: NMV = (AKAP12-S / AKAP12-FM) / (ACTB-S / ACTB-FM).

Figure 2. Methylation levels of AKAP12 in histologically normal esophageal epithelium from patients with contrasting clinical status and in matched esophageal samples. A. AKAP12 hypermethylation was apparent at relatively low levels, but it was significantly higher in normal esophageal epithelium from EAC patients (NEcA; mean, 0.00082) than in normal esophagus from non-Barrett’s/non–cancer patients (NE; mean, 0.00007; P = 0.006), or normal esophagus from ESCC patients (NEcS; mean, 0.00021 and P = 0.02), although not in NEcS versus NE (P = 0.09; Student’s t test). B. AKAP12 NMVs in EAC (mean, 0.1241) were significantly higher than those in matching NEcA (mean, 0.0008; P = 0.0026, Student’s paired t test). C. AKAP12 NMVs in ESCC (mean, 0.0018) did not differ significantly from those in matching NEcS (mean, 0.0002; P = 0.27, Student’s paired t test).
ACTB-FM), where AKAP12-S and AKAP12-FM represent AKAP12 methylation levels in sample and fully methylated DNAs, respectively, whereas ACTB-S and ACTB-FM correspond to β-actin in sample and fully methylated DNAs, respectively.

Real-time Quantitative Reverse Transcription-PCR.
To determine AKAP12 mRNA levels, one-step real-time quantitative reverse transcription-PCR was performed using a Qiagen QuantiTect Probe RT-PCR Kit (Qiagen) and the ABI 7700 Sequence Detection System (Applied Biosystems). Primers and probe for AKAP12 were as follows: AKAP12-forward, 5′-CGCCACAAGCTCCTAC-CA-3′; AKAP12-reverse, 5′-GCCATTTAGTCACCT-CCTGC-3′; and probe, 5′-AAGAATGTCAGCTGTCAC- CATCA-3′. β-Actin was used for normalization of data. Primers and probe for β-actin were the same as previously reported (12). A standard curve was generated using serial dilutions of qPCR Reference Total RNA (Clontech). Normalized mRNA value (NRV) was calculated according to the following formula for relative expression of target mRNA: NRV = (TarS / TarC) / (ACTB-S / ACTB-C), where TarS and TarC represent levels of mRNA expression for the target gene in sample and control mRNAs, respectively, whereas ACTB-S and ACTB-C correspond to amplified β-actin levels in sample and control mRNAs, respectively.

5-Aza-dC Treatment of Esophageal Cancer Cell Lines. To determine whether AKAP12 inactivation was due to promoter hypermethylation in esophageal cancer, two esophageal cancer cell lines (BIC and OE33) were subjected to 5-Aza-dC (Sigma) treatment as previously described (18, 19). Briefly, 1 × 10⁵ cells/mL were seeded onto a 100 mm dish and grown for 24 h. Then, 1 μL of 5 mmol/L 5-Aza-dC per mL of cells was added every 24 h for 4 days. DNAs and RNAs were harvested on day 4.

Data Analysis and Statistics. ROC curve analysis (20) was done using NMVs for the 67 EAC, 26 ESCC, and 66 normal specimens by Analyse-it software (version 1.71). Using this approach, the area under the ROC curve identified optimal sensitivity and specificity levels at which to distinguish normal from malignant esophageal tissues, yielding corresponding NMV thresholds defining methylation status of AKAP12. The threshold NMV value determined from this ROC curve was applied to determine the status of AKAP12 methylation in all tissue types included in the present study. For all other statistical tests, Statistica (version 6.1; StatSoft, Inc.) was used. Differences with P < 0.05 were considered significant.

Results

AKAP12 Promoter Hypermethylation in Esophageal Tissues. Promoter hypermethylation of AKAP12 was analyzed in 66 normal esophageal specimens (including 19 NE, 20 NEcS, and 27 NEcA), 60 BE (including 36 Ba and 24 Bt), 40 dysplastic Barrett’s (including 19 low-grade and 21 high-grade dysplasias), 67 EAC, and 26 ESCC. AKAP12 promoter hypermethylation showed highly discriminative ROC curve profiles and area under the ROC curves, clearly distinguishing EAC from both normal specimens and ESCC (Fig. 1A and B), but not ESCC from normal specimens (Fig. 1C).

The cutoff NMV for AKAP12 (0.05) was identified from the ROC curve (EAC versus normal specimens) as maximizing both sensitivity and specificity. Mean NMV and frequency of AKAP12 hypermethylation for each tissue type are shown in Table 1. NMVs of AKAP12 were significantly higher in EAC, ESCC, and dysplastic Barrett’s, high-grade dysplasia, low-grade dysplasia, BE, Ba, and Bt than in normal specimens (P < 0.05, Student’s t test). Moreover, the mean NMVs of AKAP12 were significantly higher in NEcA (mean = 0.00082) than in NE (mean = 0.00007 and P = 0.006) or NEcS (mean = 0.00021 and P = 0.02), but not significantly higher in NEcS than in NE (P = 0.09, Student’s t test; Table 1; Fig. 2A). The frequency of AKAP12 hypermethylation was increased in Barrett’s segment length and AKAP12 hypermethylation. A. NMV of AKAP12 was significantly higher in LSBE (mean, 0.1879) than in SSBE (mean, 0.045; P = 0.047, Student’s t test). B. Positive AKAP12 hypermethylation status was significantly correlated with BE segment length (P = 0.045; Student’s t test).

![Figure 3. Correlation between Barrett’s segment length and AKAP12 hypermethylation.](image-url)
Figure 4. *AKAP12* methylation status and mRNA expression in esophageal cancer cell lines after treatment with 5-Aza-dC. A. One of nine ESCC and two of three EAC esophageal cancer cell lines showed high *AKAP12* methylation levels, above the threshold level of 0.05. B. BIC and OE33 EAC cells were subjected to 5-Aza-dC treatment. After 5-Aza-dC treatment, the NMV of *AKAP12* was diminished, whereas the normalized mRNA value (NRV) of *AKAP12* was increased in both cell lines.

Ba (38.9%), dysplastic Barrett’s (52.5%), and EAC (52.2%) versus normal esophageal specimens (0%; *P* < 0.0001, *P* < 0.0001, and *P* < 0.0001, respectively, Fisher’s exact test). Both *AKAP12* hypermethylation frequency and mean NMV were higher in Bt than in Ba, although these differences did not achieve statistical significance (62.5% versus 38.9%, *P* = 0.073; and 0.1216 versus 0.1122, *P* = 0.82, respectively). The mean *AKAP12* NMV of EAC (0.1241) was significantly higher than that of matching NEcA (0.0008) in 27 cases with corresponding NEcA and EAC (*P* = 0.0026, Student’s paired *t* test; Fig. 2B). In contrast to EAC, only 2 (7.7%) of 26 ESCCs showed hypermethylation of *AKAP12*. There was no significant difference between tumor and normal tissue mean *AKAP12* NMV in 13 cases with matching ESCC (0.0018) and NEcS (0.0002; *P* = 0.27, Student’s paired *t* test; Fig. 2C).

Both *AKAP12* hypermethylation frequency and mean NMV were significantly higher in EAC than in ESCC (52.2% versus 7.7%, *P* < 0.0001; and 0.1157 versus 0.01, *P* = 0.0013, respectively), as well as in dysplastic Barrett’s versus ESCC (52.5% versus 7.7%, *P* = 0.0002; and 0.1344 versus 0.01, *P* = 0.0013, respectively) and in BE versus ESCC (48.3% versus 7.7%, *P* = 0.0002; and 0.116 versus 0.01, *P* = 0.0008; Table 1).

According to generally accepted criteria (21), BE was defined as long-segment (LSBE) if <3 cm in length, or short-segment (SSBE) if <3 cm. The mean NMV of *AKAP12* was significantly higher in LSBE (0.1879) than in SSBE (0.0543; *P* = 0.047, Student’s *t* test; Table 1; Fig. 3A). Similarly, the segment lengths of BEs with methylated *AKAP12* promoters (mean = 5.62 cm) were significantly longer than the segment lengths of BEs with unmethylated *AKAP12* promoters (mean = 3.18 cm; *P* = 0.045, Student’s *t* test; Fig. 3B), and the frequency of *AKAP12* hypermethylation was higher in LSBE than in SSBE (56.3% versus 28.6%; *P* = 0.16, Fisher’s exact test; Table 1).

No significant associations were observed between *AKAP12* promoter hypermethylation and patient age (data not shown), survival (data not shown), tumor stage or lymph node metastasis (Table 1), and smoking or alcohol consumption (Table 1).

AKAP12 Methylation and mRNA Levels in Esophageal Cancer Cell Lines after 5-Aza-dC Treatment. One of nine ESCC and two of three EAC esophageal cancer cell lines showed high *AKAP12* methylation levels, above the threshold level of 0.05 (Fig. 4A). BIC and OE33 cells were subjected to 5-Aza-dC treatment. After 5-Aza-dC treatment, the NMV of *AKAP12* was diminished and the mRNA level of *AKAP12* was increased in both of these cell lines (Fig. 4B).

Correlation between Hypermethylation and mRNA Expression of *AKAP12* in EAC. To further elucidate the relationship between DNA hypermethylation and mRNA expression of *AKAP12*, we determined *AKAP12* mRNA levels in 25 EAC samples using real-time reverse transcription-PCR. *AKAP12* mRNA levels of EACs with unmethylated *AKAP12* promoters (mean = 0.1663) were higher than those of EACs with methylated *AKAP12* promoters (mean = 0.0668), with this difference barely failing to achieve statistical significance (*P* = 0.057, Student’s *t* test; Fig. 5).

Discussion

In the current study, we systematically investigated hypermethylation of the *AKAP12* gene promoter in primary human esophageal lesions of contrasting histologic types and grades. Our results show that *AKAP12* promoter hypermethylation occurs frequently in human EAC, but not in ESCC. In addition, our data show that *AKAP12* hypermethylation increases early during esophageal adenocarcinogenesis, from 0% in normal specimens to 38.9% in Ba, 52.5% in dysplastic Barrett’s, and 52.2% in EAC. Interestingly, even in nonneoplastic Barrett’s mucosa, *AKAP12* seemed to serve as a biomarker of more ominous disease lurking nearby: *AKAP12* was

Figure 4. *AKAP12* methylation status and mRNA expression in esophageal cancer cell lines after treatment with 5-Aza-dC. A. One of nine ESCC and two of three EAC esophageal cancer cell lines showed high *AKAP12* methylation levels, above the threshold level of 0.05. B. BIC and OE33 EAC cells were subjected to 5-Aza-dC treatment. After 5-Aza-dC treatment, the NMV of *AKAP12* was diminished, whereas the normalized mRNA value (NRV) of *AKAP12* was increased in both cell lines.

Figure 5. Correlation between *AKAP12* mRNA expression and DNA methylation status in primary human esophageal adenocarcinoma. A. There was a significant positive correlation between *AKAP12* mRNA expression and DNA methylation status in primary human esophageal adenocarcinoma (*r* = 0.76, *P* < 0.0001). B. A scatter plot showing the correlation between *AKAP12* mRNA expression and DNA methylation status in primary human esophageal adenocarcinoma.
with a 5 cm difference in length associated with a 1.7-fold increase in cancer risk (95% CI, 0.8- to 3.8-fold; ref. 21). Weston et al. reported significant differences in the frequency of both dysplasia and EAC between SSBE and LSBE, at 8.1% versus 24.4% for dysplasia ($P < 0.0001$) and 0% versus 15.4% for EAC ($P < 0.0005$; ref. 22). Hirota et al. reported that the prevalence of dysplasia and cancer differed significantly in patients with SSBE versus patients with LSBE in a comprehensive prospective study of 889 consecutive patients (23). More recently, Hage et al. reported a significantly increased risk of progression to high-grade dysplasia or EAC with LSBE after a mean follow-up of 12.7 years (24). Interestingly, in the current study, AKAP12 methylation showed a strong correlation with BE segment length. The mean NMV of AKAP12 was significantly higher in LSBE than in SSBE. Similarly, the length of the BE segment in specimens with methylated AKAP12 promoters was significantly greater than in samples with unmethylated AKAP12 promoters. Thus, AKAP12 hypermethylation may constitute a molecular correlate of BE segment length, as well as a harbinger of nearby neoplastic disease.

Previous studies have shown the importance of hypermethylation of gene promoters in histologically normal tissue as this event relates to the initiation of carcinoma (25-30). By methylation-specific in situ PCR and in situ RNA and protein analysis, methylation of the MLH1 promoter was observed in small foci of normal colonic epithelial cells from patients with colon cancer and associated silencing of this gene, but not in sections of normal colon from healthy volunteers, suggesting that tumors with gene silencing due to epigenetic alteration may evolve from rare clones of methylated cells in normal epithelium (29).

Based on a panel of 14 promoter loci, it has recently been reported that nonneoplastic epithelium from patients with ESCC is significantly more methylated than control esophageal epithelium from healthy volunteers, and that this may contribute to progression in the dysplasia-carcinoma sequence in ESCC (30). Similarly, in the current study, AKAP12 hypermethylation was significantly higher in NECa than in NE or NECs, whereas no such trend was observed for NECs versus NE. Thus, our highly sensitive real-time quantitative methylation-specific PCR approach allowed this study to show that nonneoplastic esophageal epithelium from patients with EAC already exhibit a low but abnormal level of AKAP12 promoter methylation. It can be hypothesized that increased AKAP12 methylation in normal esophageal cells extends their lifespan and puts them at higher risk for future malignant transformation. These results further imply that hypermethylation of AKAP12 is an early and unique event, constituting a potentially powerful biomarker for early EAC detection.

In accordance with previous findings (11, 12), we observed that methylation of AKAP12 in EAC cell lines was associated with silenced or reduced expression of AKAP12 mRNA. Treatment with 5-Aza-DC led to increased mRNA expression and concomitant reduced AKAP12 methylation in these cells. Restoration of AKAP12 mRNA expression by demethylating agent treatment implies that DNA hypermethylation was responsible for silencing AKAP12. The involvement hypermethylated more frequently in Barrett’s mucosa with than without accompanying tumor, and methylation levels of AKAP12 were higher in Barrett’s with than without accompanying tumor. Furthermore, AKAP12 methylation levels in EAC were significantly higher than in matching NECa from the same patient. Taken together, these results imply that hypermethylation of AKAP12 occurs early in some subjects, that its frequency increases during adenocarcinogenesis, and that it is tissue-specific (i.e., common in EAC but rare in ESCC). Further evidence supporting this tissue specificity was provided by ROC curves, which clearly distinguished EAC from ESCC but not ESCC from normal specimens. Similarly, support for tissue specificity was evident from the finding that both AKAP12 hypermethylation frequency and mean AKAP12 NMV were significantly higher in EAC than in ESCC. Thus, AKAP12 hypermethylation seems to constitute a critical event unique to human EAC.

Despite conflicting reports regarding the length of Barrett’s esophagus as a predictive factor in BE progression, it is likely that the length of the Barrett’s segment is an important predictor of neoplastic progression. Rudolph et al. showed that segment length was not related to cancer risk in a prospective cohort study of 309 patients with Barrett’s esophagus followed in the Seattle Barrett’s Esophagus Project ($P > 0.2$); however, when patients with high-grade dysplasia at entrance were excluded, a strong trend was observed,
of CpG island hypermethylation in the silencing of AKAP12 is also supported by our observation that AKAP12 mRNA levels in EACs with unmethylated AKAP12 promoters were markedly higher than those in EACs with methylated AKAP12. 5-Aza-dC and its derivatives have shown effectiveness as therapeutic anticancer drugs (31, 32), thus, AKAP12 represents a novel potential target for molecularly based therapies involving demethylation in human EACs.

The current study indicates that hypermethylation of the AKAP12 promoter, leading to gene silencing, is a common event in human EACs, occurring early during Barrett’s-associated esophageal adenocarcinogenesis. In addition, AKAP12 hypermethylation is uncommon in human ESCC, and thus represents a cell type-specific biomarker for EAC. Further large-scale prospective longitudinal validation studies of this epigenetic event as a potential predictive biomarker of EAC are stimulated by these data. These results also provide motivation for further research into potential applications of selected DNA methyltransferase or other indirect inhibitors of methylation (such as histone deacetylase inhibitors) for the prevention and treatment of esophageal cancer.

Acknowledgments

The authors thank Prof. Yutaka Shimada for his generous gift of excellent cell lines.

References

Hypermethylation of the AKAP12 Promoter is a Biomarker of Barrett's-Associated Esophageal Neoplastic Progression

Zhe Jin, James P. Hamilton, Jian Yang, et al.

Updated version
Access the most recent version of this article at:
http://cebp.aacrjournals.org/content/17/1/111

Cited articles
This article cites 31 articles, 10 of which you can access for free at:
http://cebp.aacrjournals.org/content/17/1/111.full.html#ref-list-1

Citing articles
This article has been cited by 7 HighWire-hosted articles. Access the articles at:
/content/17/1/111.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.