Introduction

Smokeless tobacco is “carcinogenic to humans (group 1)” according to a working group of the IARC (1). The most prevalent strong carcinogens in smokeless tobacco products are the tobacco-specific nitrosamines (1). Among these, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is the most carcinogenic in laboratory animals, inducing tumors mainly in the lung, but also in the pancreas, nasal mucosa, and liver of rats (2). A mixture of NNK and N2-nitrosonornicotine (NNN), when administered to rats by oral swabbing, caused oral cavity tumors (3). NNK and NNN are also rated as “carcinogenic to humans” (1). Smokeless tobacco use is generally considered to be less toxic and carcinogenic than cigarette smoking because smokeless tobacco lacks or has considerably lower concentrations of many of the toxicants and carcinogens formed during combustion. Thus, responsible members of the tobacco control community have suggested that switching to “low nitrosamine” smokeless tobacco may be an effective harm reduction strategy for smokers who cannot stop using tobacco products (4, 5). Yet there are only scattered data in the literature on exposure to the strong carcinogen NNK in smokeless tobacco users.

Exposure to NNK from tobacco products can be estimated using the urinary biomarker total 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), the sum of NNAL and its glucuronides, metabolites of NNK (6). A number of small studies have reported levels of total NNAL in the urine of smokeless tobacco users (7-12), and one compared total NNAL using the urinary biomarker total 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol and its glucuronides (total NNAL), a biomarker of NNK exposure, and cotinine, a biomarker of nicotine exposure, were quantified in the urine of 420 smokers and 182 smokeless tobacco users who were participants in studies designed to reduce their use of these products. The measurements were taken at baseline, before intervention. Levels of total NNAL per milliliter of urine were significantly higher in smokeless tobacco users than in smokers ($P < 0.0001$). When adjusted for age and gender, levels of total NNAL per milligram of creatinine were also significantly higher in smokeless tobacco users than in smokers ($P < 0.001$). Levels of cotinine per milliliter of urine and per milligram of creatinine were significantly higher in smokeless tobacco users than in smokers ($P < 0.001$). These results show similar exposures to the potent tobacco-specific carcinogen NNK in smokeless tobacco users and smokers. These findings do not support the use of smokeless tobacco as a safe substitute for smoking. (Cancer Epidemiol Biomarkers Prev 2007;16(8):1567-72)
Table 1. Demographic data for the subjects in this study

<table>
<thead>
<tr>
<th>Smokers</th>
<th>No. of subjects</th>
<th>Gender (% male)</th>
<th>Race (% white)</th>
<th>Mean age (95% CI)</th>
<th>Mean weight, lbs (95% CI)</th>
<th>Mean cigarettes/d (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study 1</td>
<td>114</td>
<td>48</td>
<td>97</td>
<td>45.4 (43.5-47.4)</td>
<td>177 (170-185)</td>
<td>26.0 (24.7-27.3)</td>
</tr>
<tr>
<td>Study 2</td>
<td>120</td>
<td>91</td>
<td>94</td>
<td>58.8 (57.2-60.4)</td>
<td>195 (189-202)</td>
<td>27.4 (25.2-29.7)</td>
</tr>
<tr>
<td>Study 3</td>
<td>186</td>
<td>52</td>
<td>62</td>
<td>45.9 (40.0-47.9)</td>
<td>183 (175-191)</td>
<td>24.7 (23.0-26.5)</td>
</tr>
<tr>
<td>Pooled (studies 1-3)</td>
<td>420</td>
<td>62</td>
<td>80</td>
<td>49.5 (48.2-50.7)</td>
<td>185 (181-189)</td>
<td>25.8 (24.8-26.9)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Smokeless tobacco users</th>
<th>No. of subjects</th>
<th>Gender (% male)</th>
<th>Race (% white)</th>
<th>Mean age (95% CI)</th>
<th>Mean weight, lbs (95% CI)</th>
<th>Mean tins per wk (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study 4</td>
<td>80</td>
<td>100</td>
<td>100</td>
<td>32.6 (30.9-34.2)</td>
<td>215 (206-223)</td>
<td>4.1 (3.8-4.5)</td>
</tr>
<tr>
<td>Study 5</td>
<td>60</td>
<td>100</td>
<td>98</td>
<td>32.8 (31.2-34.3)</td>
<td>219 (209-229)</td>
<td>4.2 (3.6-4.7)</td>
</tr>
<tr>
<td>Study 6</td>
<td>42</td>
<td>100</td>
<td>97</td>
<td>33.6 (31.5-35.8)</td>
<td>224 (213-234)</td>
<td>4.3 (3.8-4.9)</td>
</tr>
<tr>
<td>Pooled (studies 4-6)</td>
<td>182</td>
<td>100</td>
<td>99</td>
<td>32.9 (31.9-33.9)</td>
<td>218 (213-224)</td>
<td>4.2 (3.9-4.4)</td>
</tr>
</tbody>
</table>

pregnancy or intention to become pregnant. Participants were randomized to a smoking reduction intervention that used a combination of behavioral and pharmacologic treatment to encourage at least 50% reduction in cigarette consumption or usual care, and followed for 18 months. Total NNAL and cotinine in urine were measured once at baseline. In study 3, smokers interested in reducing their smoking via scheduled smoking by use of a printed manual or a handheld computer were recruited from television and print advertisements in the Washington, DC-northern Virginia metropolitan area. They were selected if they met the following criteria: (a) self-report of smoking 15 or more cigarettes per day for 1 or more years, (b) an unsuccessful quit attempt in the past year, (c) no specific plan to quit in the next 30 days and willing to attempt smoking reduction as a short-term goal, (d) used other tobacco products three or fewer times in the past week, (e) no current use of nicotine replacement therapy, (f) no use of Zyban in the past 2 weeks, (g) not pregnant, and (h) no treatment for alcohol or drug abuse in the past year. Total NNAL was measured in urine samples taken at baseline. Cotinine was measured in saliva; urine cotinine data were not available from this study.

Studies 4 to 6 involved smokeless tobacco users who were seeking treatment for smokeless tobacco reduction. Baseline data from these studies were used. The studies examined the effects of tobacco-free snuff use (an herbal snuff-like product; study 4; ref. 16), brand switching (study 5; ref. 17), or use of a nicotine lozenge (study 6) compared with a control group on reduction of smokeless tobacco use. Subjects for studies 4 to 6 were recruited over the telephone to determine interest and willingness to participate. After telephoning potential participants, a person oversaw the screening, subjects were informed that they were screened over the telephone to determine interest and willingness to participate.

In exploratory analyses, total NNAL and cotinine were summarized using geometric means because of the skewness of their distributions. The corresponding confidence intervals (95% CI) were constructed on the natural logarithmic scale and then back-transformed to the original scale. The box-and-whisker plots were displayed for total NNAL in each individual study side by side, and for the pooled samples of smokers and smokeless tobacco users for total NNAL and cotinine. For comparison of smokers and smokeless tobacco users, we used two sample t tests and multiple linear regressions to adjust for demographic characteristics. Both analyses were based on the logarithmic scale to satisfy normality and constant variance assumptions. The estimated regression coefficients and confidence intervals for

Table 2. Total NNAL and cotinine in the urine of smokers (n = 420) and smokeless tobacco users (n = 182)

<table>
<thead>
<tr>
<th>Total NNAL</th>
<th>Cotinine</th>
</tr>
</thead>
<tbody>
<tr>
<td>pmol/mL</td>
<td>nmol/mL</td>
</tr>
<tr>
<td>pmol/mg creatinine</td>
<td>nmol/mg creatinine</td>
</tr>
</tbody>
</table>

Smokers
Study 1 2.12 (1.88-2.38) 2.01 (1.79-2.25) 25.0 (22.2-28.1) 23.7 (21.3-26.4)
Study 2 2.06 (1.81-2.34) 2.24 (2.01-2.49) 19.0 (16.4-22.1) 20.8 (18.5-23.3)
Study 3 2.31 (2.05-2.61) 2.62 (2.39-2.87) 21.7 (19.7-23.9) 22.2 (20.5-24.0)
Pooled (studies 1-3) 2.18 (2.03-2.35) 2.33 (2.19-2.47) 21.7 (19.7-23.9) 22.2 (20.5-24.0)

Smokeless tobacco users
Study 4 3.52 (3.05-4.07) 2.35 (2.05-2.70) 50.6 (44.1-58.1) 33.8 (29.4-38.8)
Study 5 3.81 (3.09-4.09) 2.50 (2.04-3.07) 38.5 (31.6-47.7) 25.5 (21.2-30.6)
Study 6 4.30 (3.42-5.42) 2.98 (2.31-3.84) 32.9 (26.3-41.2) 22.5 (17.8-28.4)
Pooled (studies 4-6) 3.79 (3.40-4.21) 2.88 (2.28-3.82) 42.1 (37.9-46.8) 28.1 (23.4-31.2)
cases, total NNAL per milliliter of urine was significantly
smokers and younger white smokeless tobacco users. In all
younger smokeless tobacco users, and younger white male
comparisons were made between younger male smokers and
in white smokeless tobacco users and smokers only. Further
smokeless tobacco users were white, the data were compared
presented in Table 3. Because all smokeless tobacco users were
Wilcoxon Mann-Whitney test). However, as shown in Table 3,
creatinine levels were significantly higher in smokeless tobacco
users, in both the entire group and in each stratum. When
multiple linear regression was used to adjust for age and
gender, smokeless tobacco users had a significant 32% (95% CI,
13-53%; P < 0.001) higher level of total NNAL per milligram of
creatinine than did smokers (2.83 versus 2.15 pmol/mg
creatinine for males of median age 45).

The levels of total NNAL expressed per milligram of
creatinine in smokers and smokeless tobacco users are
illustrated in Fig. 3 and summarized by strata in Table 3. There
were no significant differences between the median
levels in the whole groups or in any of the strata (t test and
Wilcoxon Mann-Whitney test). However, as shown in Table 3,
creatinine levels were significantly higher in smokeless tobacco
users, in both the entire group and in each stratum. When
multiple linear regression was used to adjust for age and
gender, smokeless tobacco users had a significant 32% (95% CI,
13-53%; P < 0.001) higher level of total NNAL per milligram of
creatinine than did smokers (2.83 versus 2.15 pmol/mg
creatinine for males of median age 45).

Although we did not have 24 h urine samples, the excretion of
total NNAL in smokers versus smokeless tobacco
users can be estimated from data in the literature on
creatinine levels in males of different weights (22). Applying
this to the younger male smokers (average weight, 183 ±
53.5 lbs), the geometric mean 24 h excretion of total NNAL
would be 3.5 nmol (1,600 mg creatinine/24 h × 2.2 pmol
total NNAL/mg creatinine) whereas that for the younger male
smokeless tobacco users (average weight, 218 ± 37.4 lbs)
would be 4.3 nmol (1,800 mg creatinine/24 h × 2.39 pmol
total NNAL/mg creatinine).

The levels of cotinine per milliliter of urine and per
milligram of creatinine were significantly higher in smokeless
tobacco users than in smokers (Fig. 4A and B; Table 4;
P < 0.001, t test and Wilcoxon Mann-Whitney test), and in
each stratum except when expressed per milligram of
creatinine in younger smokers versus younger smokeless
tobacco users. The estimated geometric mean daily levels of
cotinine in the urine of younger male smokers would be
33 μmol, whereas those in younger male smokeless tobacco
users would be 49 μmol.

Figure 1. Log-scaled levels of total NNAL (pmol/mL) in the urine of
subjects in studies 1 to 3 (smokers) and studies 4 to 6 (smokeless
tobacco users). Boxes, 25th and 75th percentile values (interquartile
range). Bars, maximum observation below the upper fence (1.5 times
the interquartile range above the 75th percentile), and the minimum
observation above the lower fence (1.5 times the interquartile range

the log-transformed variables were exponentiated such that the
results could be interpreted on their original scale as a
percentage difference in the median of the outcome. All
statistical tests were two-sided.

Results

Demographic data are summarized in Table 1. The 420
smokers were 62% male, 80% were white, and had a mean
age of 49.5 years (95% CI, 48.2-50.7). They smoked a mean of
25.8 cigarettes per day (95% CI, 24.8-26.9). The 182 smokeless
tobacco users were all male, 99% were white, and had a mean
age of 32.9 years (95% CI, 31.9-33.8). Gender, age, weight, and
race were significantly different among smokers and smokeless
tobacco users (P < 0.0001). The smokeless tobacco users
consumed an average of 4.2 tins per week (95% CI, 3.9-4.4).

Ten percent of the smokers used regular cigarettes (>14.5 mg
tar), 39% smoked light cigarettes (>6.5-14.5 mg tar), 30%
smoked ultra-light cigarettes (<6.5 mg tar), 39% smoked light cigarettes (>6.5-14.5 mg tar), and brand data
were not available for the rest. The smokeless tobacco users
used Copenhagen (31.5%), Skoal (12.7%), Kodiak (47.0%), and
other brands (8.8%).

Total NNAL and cotinine per milliliter of urine and per
milligram of creatinine for the subjects in each study, and the
pooled data, are summarized in Table 2. Urinary cotinine was
not available for the subjects in study 3. Total NNAL per
milliliter of urine in each study is also summarized in Fig. 1.
Total NNAL levels per milliliter of urine were higher in each
group of smokeless tobacco users than in each group of
smokers. The combined data are illustrated in Fig. 2. Total
NNAL per milliliter of urine from smokeless tobacco users was
significantly higher than in smokers (P < 0.0001, t test, and
Wilcoxon Mann-Whitney test).

Stratified data for total NNAL per milliliter of urine are
presented in Table 3. Because all smokeless tobacco users were
male, their data were compared with male smokers only.
Because the smokeless tobacco users were younger than the
smokers, the data were compared in smokeless tobacco users and
smokers under the age of 45 and because most of the
smokeless tobacco users were white, the data were compared
in white smokeless tobacco users and smokers only. Further
comparisons were made between younger male smokers and
younger smokeless tobacco users, and younger white male
smokers and younger white smokeless tobacco users. In all
cases, total NNAL per milliliter of urine was significantly
greater in the smokeless tobacco users (P < 0.0001). Based on
multiple regression, adjusting for age and gender, smokeless
tobacco users had a 73% (95% CI, 45-105%; P < 0.0001) higher
median level of total NNAL per milliliter of urine than did smokers (3.76 versus 2.18 pmol/mL for males of median
age 45).

The levels of total NNAL expressed per milligram of
creatinine in smokers and smokeless tobacco users are
illustrated in Fig. 3 and summarized by strata in Table 3. There
were no significant differences between the median
levels in the whole groups or in any of the strata (t test and
Wilcoxon Mann-Whitney test). However, as shown in Table 3,
creatinine levels were significantly higher in smokeless tobacco
users, in both the entire group and in each stratum. When
multiple linear regression was used to adjust for age and
gender, smokeless tobacco users had a significant 32% (95% CI,
13-53%; P < 0.001) higher level of total NNAL per milligram of
creatinine than did smokers (2.83 versus 2.15 pmol/mg
creatinine for males of median age 45).

Although we did not have 24 h urine samples, the excretion of
total NNAL in smokers versus smokeless tobacco
users can be estimated from data in the literature on
creatinine levels in males of different weights (22). Applying
this to the younger male smokers (average weight, 183 ±
53.5 lbs), the geometric mean 24 h excretion of total NNAL
would be 3.5 nmol (1,600 mg creatinine/24 h × 2.2 pmol
total NNAL/mg creatinine) whereas that for the younger male
smokeless tobacco users (average weight, 218 ± 37.4 lbs)
would be 4.3 nmol (1,800 mg creatinine/24 h × 2.39 pmol
total NNAL/mg creatinine).

The levels of cotinine per milliliter of urine and per
milligram of creatinine were significantly higher in smokeless
tobacco users than in smokers (Fig. 4A and B; Table 4;
P < 0.001, t test and Wilcoxon Mann-Whitney test), and in
each stratum except when expressed per milligram of
creatinine in younger smokers versus younger smokeless
tobacco users. The estimated geometric mean daily levels of
cotinine in the urine of younger male smokers would be
33 μmol, whereas those in younger male smokeless tobacco
users would be 49 μmol.

Figure 2. Log-scaled level of total NNAL (pmol/mL) in the urine of
smokers (studies 1-3) and smokeless tobacco users (studies 4-6).
Table 3. Levels of total NNAL and creatinine in smokers and smokeless tobacco users stratified by gender, age, and race

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>Age, y (mean ± SD)</th>
<th>Geometric mean (95% CI)</th>
<th>P</th>
<th>Geometric mean (95% CI)</th>
<th>P</th>
<th>Geometric mean (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smokers</td>
<td>420</td>
<td>49.5 ± 12.9</td>
<td>2.18 (2.03-2.35)</td>
<td><0.0001</td>
<td>2.33 (2.19-2.47)</td>
<td>0.17</td>
<td>0.94 (0.88-1.00)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Smokers</td>
<td>260</td>
<td>51.0 ± 13.2</td>
<td>2.17 (1.97-2.38)</td>
<td><0.0001</td>
<td>2.27 (2.11-2.45)</td>
<td>0.10</td>
<td>0.95 (0.87-1.04)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Male smokeless tobacco users</td>
<td>182</td>
<td>32.9 ± 6.76</td>
<td>3.79 (3.40-4.21)</td>
<td><0.0001</td>
<td>2.94 (2.78-2.82)</td>
<td>0.09</td>
<td>1.49 (1.39-1.61)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Male smokers</td>
<td>182</td>
<td>32.9 ± 6.76</td>
<td>3.79 (3.40-4.21)</td>
<td><0.0001</td>
<td>2.94 (2.78-2.82)</td>
<td>0.09</td>
<td>1.49 (1.39-1.61)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Younger smokers</td>
<td>128</td>
<td>35.9 ± 8.02</td>
<td>2.31 (2.03-2.64)</td>
<td><0.0001</td>
<td>2.12 (1.91-2.36)</td>
<td>0.12</td>
<td>1.08 (0.97-1.20)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Younger smokers</td>
<td>165</td>
<td>32.0 ± 7.51</td>
<td>3.67 (3.29-4.10)</td>
<td><0.0001</td>
<td>2.39 (2.15-2.65)</td>
<td>0.29</td>
<td>0.87 (0.81-0.93)</td>
<td><0.0001</td>
</tr>
<tr>
<td>White smokers</td>
<td>174</td>
<td>33.0 ± 6.82</td>
<td>3.81 (3.41-4.24)</td>
<td><0.0001</td>
<td>2.39 (2.23-2.56)</td>
<td>0.29</td>
<td>0.87 (0.81-0.93)</td>
<td><0.0001</td>
</tr>
<tr>
<td>White male smokers</td>
<td>79</td>
<td>35.6 ± 8.24</td>
<td>2.43 (2.02-2.92)</td>
<td><0.0001</td>
<td>2.20 (1.90-2.54)</td>
<td>0.37</td>
<td>1.10 (0.94-1.28)</td>
<td>0.0001</td>
</tr>
<tr>
<td>Younger male smokeless tobacco users</td>
<td>171</td>
<td>31.9 ± 5.42</td>
<td>3.67 (3.29-4.10)</td>
<td><0.0001</td>
<td>2.39 (2.15-2.65)</td>
<td>0.37</td>
<td>1.10 (0.94-1.28)</td>
<td>0.0001</td>
</tr>
<tr>
<td>Younger white male smokers</td>
<td>128</td>
<td>35.0 ± 8.32</td>
<td>2.25 (1.79-2.83)</td>
<td><0.0001</td>
<td>2.19 (1.82-2.62)</td>
<td>0.32</td>
<td>1.02 (0.84-1.23)</td>
<td>0.0002</td>
</tr>
<tr>
<td>Younger white male smokeless tobacco users</td>
<td>165</td>
<td>32.0 ± 5.45</td>
<td>3.70 (3.31-4.13)</td>
<td><0.0001</td>
<td>2.43 (2.18-2.70)</td>
<td>0.32</td>
<td>1.52 (1.41-1.65)</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

*Data was missing for one subject.
† Arithmetic mean: 2.84 ± 2.17.
‡ Arithmetic mean: 2.82 ± 1.99.
§ Arithmetic mean: 2.83 ± 2.17.
∥ Arithmetic mean: 3.29 ± 2.63.
¶<45 yrs old.

There was a significant correlation between total NNAL and cotinine in smokeless tobacco users [Pearson correlation coefficient 0.58 (95% CI, 0.47-0.67; P < 0.001); Spearman correlation coefficient 0.64 (95% CI, 0.55-0.72; P < 0.0001)] and in smokers [Pearson 0.57 (95% CI, 0.47-0.65; P < 0.001), Spearman 0.54 (95% CI, 0.44-0.62; P < 0.0001)].

Discussion

The results of this study show that levels of urinary total NNAL are significantly higher in smokeless tobacco users who used conventional and popular U.S. brands of smokeless tobacco than in cigarette smokers. Differences in the route of administration of NNK in smokeless tobacco users (oral) and smokers (inhalation) could affect the levels of NNAL in urine. Pharmacokinetic data on NNK and NNAL in smokers and smokeless tobacco users are limited. One study showed that the distribution half-lives of NNAL and its glucuronides were significantly less in smokeless tobacco users than in smokers whereas the terminal half lives were the same (13). Nevertheless, the results of the present study indicate that exposure to NNKs is at least comparable in smokeless tobacco users and smokers.

Our results raise serious questions about the strategy of using smokeless tobacco as a substitute for cigarette smoking. Proponents of this strategy have focused on "low-nitrosamine" smokeless tobacco products such as Swedish snus (4). We have previously shown that switching from typical American smokeless tobacco products such as those used here, to Swedish snus, does in fact lower levels of urinary total NNAL but not that a low-nitrosamine product, and its users still have substantial amounts of NNAL in their urine. Encouraging people to switch from cigarette smoking to smokeless tobacco also may have the unintended consequence of increasing sales of American brands of smokeless tobacco such as those used by the subjects in this study. NNK exposure in smokeless tobacco users as shown in this study presents an unacceptable risk and should not be encouraged.

Administration of NNK in the drinking water to rats resulted in lung and pancreatic cancer (23). Would smokeless tobacco users be at similar risk? This question is difficult to examine because few epidemiologic studies have sufficient numbers of smokeless tobacco users who were not also smokers at some time in their lives. The large prospective American Cancer Society Cancer Prevention Studies 1 and 2 did however address this question (24). Whereas study 1 found no increased risk of lung cancer in smokeless tobacco users, study 2 did show a significantly increased 2-fold mortality hazard ratio for lung cancer in smokeless tobacco users compared with controls who did not use any type of tobacco product (24). A prospective study of smokeless tobacco use in Norway showed an increased risk of pancreatic cancer compared with non–tobacco users, which is also consistent with the carcinogenic effects of NNK.

Figure 3. Log-scaled levels of total NNAL (pmol/mg creatinine) in the urine of smokers (studies 1-3) and smokeless tobacco users (studies 4-6).
in the rat (25). Smokeless tobacco is also a recognized cause of oral cavity cancer (although this was not observed in Cancer Prevention Studies 1 and 2; refs. 1, 26). A mixture of NNK and NNN caused oral tumors in rats (3). Levels of NNN in smokeless tobacco are consistently higher than those of NNK (27, 28). Although NNN levels in urine were not measured here, previous studies have shown the presence of NNN in the saliva and urine of smokeless tobacco users (29, 30).

There is no doubt that the risk for lung cancer is greater in smokers than in smokeless tobacco users (1, 30). This is not inconsistent with the data presented here. Cigarette smoke contains, in addition to NNK, multiple carcinogenic combustion products which are not present, or present in only low amounts, in smokeless tobacco (31). These include several types of carcinogens such as polycyclic aromatic hydrocarbons, aldehydes, ethylene oxide, and benzene which are implicated as causes of lung cancer, along with toxicants such as acrolein, weakly acidic tumor promoters, and cocarcinogens, as well as free radicals which can enhance carcinogenicity (32, 33). Furthermore, NNK is directly deposited in the lungs of smokers, which is likely to increase its carcinogenic effect in that organ. But the data presented here show that smokeless tobacco use is far from safe.

The levels of cotinine in the urine of smokeless tobacco users in this study were significantly higher than in smokers. The pharmacokinetics of nicotine have been compared in smokeless tobacco users and smokers (34). Although similar, the ratio of cotinine to nicotine area under the curve was significantly greater while using smokeless tobacco compared with smoking, possibly due to first pass clearance of swallowed nicotine (34, 35). Our results are consistent with this and a number of previous studies which have shown comparable uptake of nicotine, as measured by cotinine levels, in smokeless tobacco users and smokers (36-39). These results show that, in a treatment-seeking population, smokeless tobacco users strive to achieve similar nicotine levels as do cigarette smokers in order to satisfy their craving.

A limitation of this study is that our smokers and smokeless tobacco users were seeking to reduce their tobacco use. These dependent individuals may have had higher levels of total NNAL and cotinine in their urine than tobacco users who were not seeking treatment. A more appropriate design would have been a cross-sectional investigation of a representative sample of smokers and smokeless tobacco users.

In summary, the results of this study show similar exposure to the tobacco-specific carcinogen NNK in smokers and smokeless tobacco users and do not support the general concept that most or even all currently available smokeless tobacco should be used as a substitute for cigarette smoking. Advocating for the use of smokeless tobacco as a substitute for smoking may have the unintended consequence of increasing the use and sales of smokeless tobacco products which lead to

Table 4. Levels of cotinine in smokers and smokeless tobacco users stratified by gender, age, and race

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>Age, y (mean ± SD)</th>
<th>Geometric mean (95% CI)</th>
<th>P</th>
<th>Geometric mean (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smokers</td>
<td>232</td>
<td>52.3 ± 11.7</td>
<td>21.7 (19.7-23.9)*</td>
<td><0.0001</td>
<td>22.2 (20.5-24.0)</td>
<td>0.0003</td>
</tr>
<tr>
<td>Smokeless tobacco users</td>
<td>180</td>
<td>32.9 ± 6.76</td>
<td>42.1 (37.9-46.8)</td>
<td><0.0001</td>
<td>28.1 (25.4-31.2)</td>
<td>0.08</td>
</tr>
<tr>
<td>Male smokers</td>
<td>162</td>
<td>54.6 ± 11.1</td>
<td>21.8 (19.3-24.7)</td>
<td><0.0001</td>
<td>20.8 (18.9-22.8)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Male smokeless tobacco users</td>
<td>180</td>
<td>32.9 ± 6.76</td>
<td>42.1 (37.9-46.8)</td>
<td><0.0001</td>
<td>28.1 (25.4-31.2)</td>
<td>0.08</td>
</tr>
<tr>
<td>Younger smokers†</td>
<td>61</td>
<td>37.7 ± 6.85</td>
<td>28.3 (24.0-33.3)</td>
<td>0.0003</td>
<td>22.7 (19.4-26.4)</td>
<td>0.06</td>
</tr>
<tr>
<td>Younger smokeless tobacco users</td>
<td>170</td>
<td>31.9 ± 5.42</td>
<td>41.6 (37.3-46.5)</td>
<td>0.0001</td>
<td>27.1 (24.4-30.1)</td>
<td>0.0001</td>
</tr>
<tr>
<td>White smokers</td>
<td>214</td>
<td>52.4 ± 11.9</td>
<td>21.7 (19.6-24.0)</td>
<td><0.0001</td>
<td>22.6 (20.9-24.6)</td>
<td>0.0001</td>
</tr>
<tr>
<td>White smokeless tobacco users</td>
<td>172</td>
<td>33.0 ± 6.82</td>
<td>43.6 (39.1-48.5)</td>
<td>0.0003</td>
<td>29.2 (26.4-32.4)</td>
<td>0.04</td>
</tr>
<tr>
<td>Younger male smokers</td>
<td>31</td>
<td>38.6 ± 6.14</td>
<td>30.2 (23.7-38.5)</td>
<td>0.02</td>
<td>20.6 (16.8-25.2)</td>
<td>0.04</td>
</tr>
<tr>
<td>Younger male smokeless tobacco users</td>
<td>170</td>
<td>31.9 ± 5.42</td>
<td>41.6 (37.3-46.5)</td>
<td>0.02</td>
<td>27.1 (24.4-30.1)</td>
<td>0.04</td>
</tr>
<tr>
<td>Younger white male smokers</td>
<td>28</td>
<td>38.5 ± 6.24</td>
<td>30.1 (22.9-39.5)</td>
<td>0.02</td>
<td>21.2 (17.0-26.5)</td>
<td>0.04</td>
</tr>
<tr>
<td>Younger white male smokeless tobacco users</td>
<td>164</td>
<td>32.0 ± 5.45</td>
<td>42.8 (38.4-47.9)</td>
<td>0.02</td>
<td>28.1 (25.4-31.2)</td>
<td>0.04</td>
</tr>
</tbody>
</table>

*Arithmetic mean: 27.4 ± 17.5.
†Arithmetic mean: 26.3 ± 16.8.
‡Arithmetic mean: 52.1 ± 31.5.
§Arithmetic mean: 34.9 ± 22.3.
‖<45 yrs old.
similar uptake of tobacco-specific carcinogens as cigarettes, particularly in an environment that does not regulate the amount of toxicancts in tobacco products. Long-term use of nicotine replacement therapy may be a better option.

References

Similar Exposure to a Tobacco-Specific Carcinogen in Smokeless Tobacco Users and Cigarette Smokers

Stephen S. Hecht, Steven G. Carmella, Sharon E. Murphy, et al.

Updated version
Access the most recent version of this article at:
http://cebp.aacrjournals.org/content/16/8/1567

Cited articles
This article cites 32 articles, 19 of which you can access for free at:
http://cebp.aacrjournals.org/content/16/8/1567.full.html#ref-list-1

Citing articles
This article has been cited by 23 HighWire-hosted articles. Access the articles at:
/content/16/8/1567.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.