Lack of Effect Modification between Estrogen Metabolism Genotypes and Combined Hormone Replacement Therapy in Postmenopausal Breast Cancer Risk

Timothy R. Rebbeck,1,2 Andrea B. Troxel,1,2 Ekaterina G. Shatalova,5 Rebecca Blanchard,5 Sandra Norman,1,2 Greta Bunin,1,2,4 Angela DeMichele,1,2,3 Rita Schinnar,1
Jesse A. Berlin,1,2 and Brian L. Strom1,2,3

1Center for Clinical Epidemiology and Biostatistics and Department of Biostatistics and Epidemiology, 2Abramson Cancer Center, 3Department of Medicine, Division of Oncology, Children’s Hospital of Philadelphia, and 4Division of Medical Genetics, Fox Chase Cancer Center, Philadelphia, Pennsylvania

Introduction

Postmenopausal use of combined hormone replacement therapy (CHRT) containing both estrogens and progestins has been associated with increased breast cancer risk (1, 2). There is also evidence that genetic variants in candidate estrogen metabolism genes influence the disposition of exogenous estrogen. The genes involved in the disposition of estrogen are well known, and include catechol-O-methyltransferase (COMT), the sulforhodanases SULT1A1 and SULT1E1, and members of the cytochrome P50 family including CYP1B1, CYP1A2, and CYP1A1. Functionally relevant genetic variants exist in each of these genes. However, it remains unclear whether these genes affect breast cancer risk (3-10), and there is even less information about whether these genes interact with relevant exposures to influence breast cancer etiology. Therefore, we evaluated whether there was evidence for modification of the effect of CHRT use by genes involved in the downstream metabolism of estrogens including COMT, CYP1A1, CYP1A2, CYP1B1, SULT1A1, and SULT1E1.

Materials and Methods

The Women’s Insights and Shared Experiences (WISE) study is a population-based case-control study that consisted of an efficient sampling design using shared controls to compare both breast cancer cases and endometrial cancer cases (11, 12). Incident breast cancer cases were identified through hospitals and the Pennsylvania State Cancer Registry, and frequency-matched controls were identified from the community using random-digit dialing. The source populations for this study were the three counties of Philadelphia (PA), Delaware (PA), and Camden (NJ). Potentially eligible cases were Caucasian women residing in these counties at the time of diagnosis who were ages 50 to 79 years old and were newly diagnosed with breast cancer between July 1, 1999 and June 30, 2002. Controls were selected from the same geographic regions as the cases, and were frequency-matched to the cases on age (in 5-year age groups) and calendar date of interview (within 3 months). The present analysis involved 677 breast cancer cases and 905 age-matched controls who met the abovementioned criteria. Genomic DNA was obtained from buccal swabs as previously described. Genetic variants in COMT, CYP1A1, CYP1A2, CYP1B1, SULT1A1, and SULT1E1 were assayed as previously described (13). Additional details of our study design, which included ascertainment of both breast and endometrial cancer cases and matched controls, have been previously reported (11-14).

Odds ratio (OR) estimates and 95% confidence intervals were calculated to evaluate the relationship between hormone metabolism genes and hormone use with breast cancer risk. Using multiple conditional logistic regression, we adjusted for (a) education (high school, high school graduate, more than high school but not a college graduate, college graduate or higher); (b) body mass index during the participant’s 40’s; (c) number of full-term pregnancies (0, 1, 2, 3+); (d) years of menses; (e) menopause type (known natural, assumed natural at reference age of 50 if menopausal status is unknown, and induced); (f) never/former/current smoker × years of smoking; and (g) oral contraceptive use (never, <3 years, 3 years or more). Adjustment for other covariates had no substantial effect on the ORs of interest. Two degrees of freedom χ2 tests for interaction of genotype by CHRT use were computed.

Results and Discussion

As shown in Table 1, we identified no statistically significant modification of the effect of CHRT use and any genotype (Table 1). Statistically significant stratum-specific ORs were identified among never users of CHRT for carriers of CYP1A1*2C or SULT1A1*3 alleles. However, our a priori hypotheses specified that only statistically significant effect modification existed according to genotype with CHRT use. Thus, we did not consider stratum-specific OR effects as meaningful if no statistically significant interaction was observed. Similarly, no significant effect modification was observed for subgroups based on histology (ductal, lobular) or estrogen receptor or progesterone receptor status (results not shown). Therefore, the present results do not support the hypothesis that estrogen metabolism genotypes modify the effect of CHRT in breast cancer etiology among postmenopausal Caucasian women.

We attempted to limit the potential for inferential errors by restricting our analyses to Caucasians, thus eliminating the majority of the variability that could lead to confounding by ethnicity, and can lead to either false-positive or false-negative associations (15). In all studies involving effect modification, power and sample size considerations are critical when evaluating the potential for type II error. Our
study was originally designed with sufficient statistical power to detect first-order interactions of the type evaluated here between genotypes and CHRT use. The study was originally designed to ascertain 564 postmenopausal Caucasian cases and 917 matched postmenopausal Caucasian controls, which would provide 80% power to detect a first-order interaction between genotype classes (e.g., carriage of any variant allele in homozygous or heterozygous form) with frequency of 5% or greater and an exposure (e.g., CHRT use on breast cancer risk in postmenopausal Caucasian women

<table>
<thead>
<tr>
<th>Gene</th>
<th>SNP variant nucleotide designation (rs number)</th>
<th>SNP variant alleles or functional designation</th>
<th>Putative function of variant</th>
<th>Genotypes represented by the ORs</th>
<th>Adjusted OR (95% confidence interval)</th>
<th>2 df (\chi^2) test for interaction (P value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMT</td>
<td>1947G>A (rs4680)</td>
<td>Val<sup>158</sup>Met, Val<sup>158</sup>*Met</td>
<td>Met alolzyme has decreased activity</td>
<td>AG/AA (any Met)</td>
<td>0.76 (0.49-1.18)</td>
<td>0.62 (0.735)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Val alolzyme has increased inducibility to produce 2OH catecholestrogens</td>
<td>AG/GG (any *2C)</td>
<td>2.35 (1.20-4.58)</td>
<td>0.82 (0.663)</td>
</tr>
<tr>
<td>CYPI1A1</td>
<td>6750A>G (rs1048943)</td>
<td>Ile<sup>462</sup>Val, *2C, m2</td>
<td>1F has increased inducibility, ultrarapid activity to produce 2-OH catecholestrogens</td>
<td>AA/AC (any *1F)</td>
<td>0.51 (0.25-1.03)</td>
<td>3.79 (0.150)</td>
</tr>
<tr>
<td>CYPI1A2</td>
<td>734C>A, 667G>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CYPI1B1</td>
<td>1294G>C (rs1056836)</td>
<td>Leu<sup>432</sup>Val, *3</td>
<td>Val alolzyme has increased 4-OH activity, increased adduct formation</td>
<td>CC/GC (any *3)</td>
<td>1.43 (0.91-2.26)</td>
<td>0.75 (0.689)</td>
</tr>
<tr>
<td>CYPI1B1</td>
<td>1358A>G or 3290A>G (rs1800440)</td>
<td>Asn<sup>622</sup>Ser, *4</td>
<td>Ser alolzyme associated with higher catalytic efficiency towards 4-OH-estradiol</td>
<td>AG/GG (any *4)</td>
<td>1.40 (0.94-2.10)</td>
<td>2.13 (0.345)</td>
</tr>
<tr>
<td>SULT1A1</td>
<td>635G>A (rs9282861)</td>
<td>Arg<sup>213</sup>His, *2</td>
<td>2O alolzyme has lower thermostability, lower enzyme activity, and lower estrogen sulfation ability</td>
<td>AG/AA (any *2)</td>
<td>1.25 (0.84-1.87)</td>
<td>0.30 (0.859)</td>
</tr>
<tr>
<td>SULT1A1</td>
<td>667A>G (rs1801030)</td>
<td>Met<sup>222</sup>Val, *3</td>
<td>3O alolzyme has similar or lower activity, depending on substrate</td>
<td>AG/GG (any *3)</td>
<td>0.30 (0.09-0.97)</td>
<td>1.39 (0.498)</td>
</tr>
<tr>
<td>SULT1E1</td>
<td>–64G>A (rs3736599)</td>
<td>Promoter variant</td>
<td>Unknown</td>
<td>AG/AA</td>
<td>1.58 (0.96-2.59)</td>
<td>0.82 (0.38-1.79)</td>
</tr>
</tbody>
</table>

NOTE: Estimated from conditional logistic regression matched on age, and adjusted for age at menarche, age at menopause, number of full-term pregnancies, body mass index, and duration of oral contraceptive use.

Acknowledgments
The authors thank Drs. J.A. Grisso, Michelle Berlin, and Mona Baumgarten for their central roles in the development and execution of this research, the database manager Dr. Anita L. Weber, the Project Manager for the Hospital Network Core, Elene Turzo, and the Project Manager for the Field Core, Desiree Burgh, for their incredible efforts in coordinating the logistical aspects of obtaining Institutional Review Board approvals in participating hospitals and for ascertaining and recruiting the large number of participants in this study. Our thanks to Karen Venuto who managed the tracking database and the vast correspondence involved in this study, to Shawn Fernandes for performing extensive quality control checks and helping with the development of the questionnaire database, to Stephen Gallagher for data management, and to Amy Walker and Saarane Panossian for laboratory analyses. We are grateful for the cooperation of the hospitals in the Greater Delaware Valley and the support of the physicians who sponsored our study in these institutions, as without this help we could not have performed this study.

References
Lack of Effect Modification between Estrogen Metabolism Genotypes and Combined Hormone Replacement Therapy in Postmenopausal Breast Cancer Risk

Updated version
Access the most recent version of this article at:
http://cebp.aacrjournals.org/content/16/6/1318

Cited articles
This article cites 15 articles, 10 of which you can access for free at:
http://cebp.aacrjournals.org/content/16/6/1318.full.html#ref-list-1

Citing articles
This article has been cited by 3 HighWire-hosted articles. Access the articles at:
/content/16/6/1318.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.