Ovarian Cancer and Menopausal Hormone Therapy: More Data and New Questions

James V. Lacey, Jr.

Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland

The key message on the use of unopposed estrogen and estrogen plus progestin after menopause is clear: increased risks of stroke, coronary heart disease, pulmonary embolism, and breast cancer outweigh reduced risks of fractures and colorectal cancer. Individual risk-benefit profiles will, of course, vary, but current clinical guidelines emphasize use for symptom relief only, at low doses and for short durations. After the 2002 announcement of the main findings from the Women’s Health Initiative estrogen-plus-progestin trial (1), which clarified those risks, use of menopausal hormone therapy decreased by ~50% (2). Today, however, symptom relief apparently triumphs potential risks: many postmenopausal women are continuing to use hormone therapy or are having difficulty discontinuing use (3).

The increased risks associated with unopposed estrogen therapy use now include ovarian cancer, based largely on recent evidence indicating that current or long-duration use increases risk by 50% to 100%. Fortunately, ovarian cancer is rare. A 2- or 5-year relative risk only increases a woman’s absolute lifetime risk of developing ovarian cancer from ~1.5% to 3.0%. Unfortunately, ovarian cancer is often lethal because it typically evades early detection. A 3.0% absolute risk means more women will face grim prognoses, difficult treatments, and low survival odds. Whether the ovarian cancer risks will influence decision-making about unopposed estrogen is uncertain because women and their physicians presumably will weigh increased risks of common conditions, such as coronary heart disease or stroke, and discount even quantitatively similar increased risks of rare outcomes such as ovarian cancer.

The association between ovarian cancer and unopposed estrogen plus progestin is less clear. Ovarian cancer studies published through 2002 included too few exposed women to provide reliable measures of association. The few case-control data from Rossing et al. (4), published in this issue of *Cancer Epidemiology, Biomarkers & Prevention*, are therefore especially informative. Its large case group, appropriate controls, and extensive risk-factor data from a population with substantial menopausal hormone therapy use offer an opportunity to directly compare associations between ovarian cancer and both unopposed estrogen and estrogen plus progestin.

Compared with no menopausal hormone therapy use, unopposed estrogen use for ≥10 years was statistically significantly associated with increased risk of ovarian cancer. Use for ≥5 years was associated with increased risk among both former and current users, but that increase disappeared 3 years after cessation of use. There are therefore especially informative. Its large case group, appropriate controls, and extensive risk-factor data from a population with substantial menopausal hormone therapy use offer an opportunity to directly compare associations between ovarian cancer and both unopposed estrogen and estrogen plus progestin.

Rossing et al. succinctly summarized the relevant published literature, offering reasonable explanations of the inconsistent results. However, important consistencies went unnoticed. The largest cohort study to date (5) replicated recent findings from a U.S. cohort (6) and the Women’s Health Initiative estrogen-plus-progestin clinical trial (7). Together, these three prospective studies suggest an increased risk among current, long-duration estrogen-plus-progestin users that is similar to that among long-duration unopposed-estrogen users. Almost all of the case-control studies, however, observed null associations. Rossing et al.’s study is the third (8, 9) to report inverse associations with estrogen use, but the first in which the association is statistically significant. In each of these studies, reduced risk seen among short-duration or former users was absent among long-duration users. Inconsistent findings typically resolve themselves over time, even when first-pass explanations, like chance or small sample size, do not fit. Contradictory findings that are each separately replicated are more puzzling.

Rossing et al. propose that estrogen and progesterone play opposing mechanistic roles in ovarian carcinogenesis, the former as a promoter and the latter encouraging apoptosis. For estrogen plus progestin to be truly protective, progestin should both negate estrogen-associated (risk-increasing) proliferation and leave the ovaries better off than they were before menopausal hormone therapy was used (because users’ risk was lower than nonusers’ risk). By extension, progestin-only hormone therapy would offer the best possible protection. The few studies with data on this uncommon exposure did not observe reduced risks among progestin-only.
users. Rossing et al. noted that the interaction with body mass index (BMI)—strongest inverse associations for estrogen plus progestin occurred among women with above-normal BMI—has also been seen with endometrial carcinoma. That analogy, however, is tenuous because continuous estrogen plus progestin only attenuates the hugely increased endometrial carcinoma risk associated with high BMI, such that the absolute risk of endometrial carcinoma remains higher among estrogen-plus-progestin users with above-normal BMI than in never-users with normal BMIs (10). In addition, unlike endometrial carcinoma, BMI increases the risk of ovarian cancer only slightly, if at all.

The estrogen-as-promoter, progestin-as-counter-proliferator mechanism also does not fit Rossing et al.’s data on recency and duration. This model predicts classic dose-response relationships. Endometrial carcinoma (11) and breast cancer (12) data operate that way: associations are strongest for current and long-duration use, but increased risks steadily diminish after cessation of use. How then can short-duration estrogen-plus-progestin use truly decrease ovarian cancer risk if long-duration use does not? Can estrogen-plus-progestin use indeed reduce a woman’s risk of ovarian cancer only after she stops taking it? There is little precedent for a lesser exposure decreasing risk when a greater exposure generates a null association. Additional data that describe risk across a longer time span since last use would be especially informative here.

As noted above, Rossing et al. are not the only group to observe these odd associations. The rarity of ovarian cancer and the tremendous challenges of studying hormone therapy mean that no single study will be sufficient to capture the complexity of the true patterns of risk. More than ever, we need replication using consistent analytic approaches in different populations with diverse experiences. As that occurs, two issues deserve particular attention. First, why do the published studies have so few former and short-term users? Estrogen-plus-progestin use greatly expanded in the decade before 2002, but up to one-half of new users reportedly stopped within a few years of starting (13). This should generate similar numbers of former, short-duration users and current, long-duration users, but current users outnumbered former users in most studies. Are former users systematically missing from case-control studies, perhaps because of participant nonresponse, changes in hormone therapy use around the time of diagnosis, imperfect operational definitions of current versus former use, or participants’ inaccurate recall of timing of use? Do cohort studies that do not update exposure information enough to capture changing use misclassify recency so much that the results are ungeneralizable? Better data on who stopped, why they stopped, and when they stopped should be a priority for current and future studies.

The second issue concerns what happens after cessation of use. The Rossing et al. data stand out because former users outnumber current users. Almost all participants were enrolled after the Women’s Health Initiative estrogen-plus-progestin findings were published, when overall use in the United States decreased rapidly. However, few data fully describe contemporary patterns of use (14). Which quitters resumed their previous hormone therapy, and when? How many others tried different preparations or different treatment altogether? Fewer women are using hormone therapy, but is overall duration of use shorter? And do the factors that lead women to initiate use or continue use because of persistent symptoms, patient preferences, or other reasons reflect underlying ovarian changes that are related to ovarian carcinogenesis? More precise data on who is taking what—and why—are also needed.

Future studies can address these inconsistencies. Individual decisions about whether to use menopausal hormone therapy or not are unlikely to depend solely on potentially increased ovarian cancer risks. For women who choose to use menopausal hormone therapy, regardless of what influences their decisions, uncertainty about ovarian cancer risks might be as worrisome as small actual increases in absolute risk. Our challenge is to describe, as precisely as possible, the specific potential risks associated with specific patterns of contemporary menopausal hormone therapy use.

References

Ovarian Cancer and Menopausal Hormone Therapy: More Data and New Questions

James V. Lacey, Jr.


Updated version Access the most recent version of this article at: http://cebp.aacrjournals.org/content/16/12/2524

Cited articles This article cites 14 articles, 1 of which you can access for free at: http://cebp.aacrjournals.org/content/16/12/2524.full#ref-list-1

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.