To the Editors: We read with interest the recent article by Bray et al. (1) who studied age-cohort-period effects of incidence time trends of testicular cancer. They hypothesize “that similar temporal patterns in the cohort dimension imply that the etiologies of seminoma and nonseminoma are largely similar if not identical.” With the exception of Italy, they estimated similar birth cohort effects for seminoma and nonseminoma in several European countries.

We think that, from an epistemologic point of view, one cannot conclude that similar birth cohort effects by histologic subgroup imply similar etiologies. However, divergent birth cohort effects (given that classification errors and other biases did not occur) may imply different etiologies by subgroup. For example, smoking follows a strong birth cohort pattern in European populations. If cigarette smoke, a mixture of carcinogens, would contain a carcinogen A that specifically induced seminoma and carcinogen B that specifically induced nonseminoma, we would observe similar birth cohort effects, although the etiology differs by subgroup.

Bray et al. note that no etiologic difference “has been established with consistency.” They add that “difficulties in achieving sufficient statistical power to detect truly significant effects” make analytic studies problematic. However, Bray et al.’s own analyses do not provide information on the precision of estimates. For example, what is the precision of the incidence rate ratios by birth cohorts in the Czech Republic (Fig. 3)? Was the precision of their study high enough to conclude that these estimates are similar? In addition, we recalculated the incidence rate ratios (seminoma/nonseminoma) of the period 1994 to 1996 from Fig. 2. The ratios show a range of ~1.14 (France) up to 1.75 (Italy). The scatter plot does not imply a linear relationship between the incidence of seminoma and nonseminoma.

One cannot ignore the available literature that gives clues to different etiologies of seminoma and nonseminoma, although risk factors of seminoma and nonseminoma may overlap in some instances (2-7). Incidence analyses of germ cell cancers among children (excluded by Bray et al.) indicate that, up to the age of 15 years, nonseminoma is almost the only gonadal germ cell tumors and shows an early peak among boys ages 0 to 4 years (8).

In conclusion, the observation of apparently similar subgroup-specific birth cohort effects estimated with unknown precision can neither logically nor empirically (as based on several published reports) lead to the conclusion that the etiologies of seminoma and nonseminoma are “largely similar if not identical.”

Andreas Stang
Clinical Epidemiology Unit,
Institute of Medical Epidemiology, Biometry, and Informatics, Medical Faculty, Martin-Luther-University of Halle-Wittenberg, Halle, Germany

Karl-Heinz Jöckel
Institute for Medical Informatics, Biometry, and Epidemiology, University of Duisburg-Essen, University Hospital of Essen, Essen, Germany

References
Etiologic Conclusions from Similar Birth Cohort Effects

Andreas Stang and Karl-Heinz Jöckel

Updated version
Access the most recent version of this article at:
http://cebp.aacrjournals.org/content/15/9/1752.1

Cited articles
This article cites 8 articles, 5 of which you can access for free at:
http://cebp.aacrjournals.org/content/15/9/1752.1.full#ref-list-1

Citing articles
This article has been cited by 1 HighWire-hosted articles. Access the articles at:
http://cebp.aacrjournals.org/content/15/9/1752.1.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.