Null Results in Brief

No Association between Progesterone Receptor Gene +331G/A Polymorphism and Endometrial Cancer

Laure Dossus,1 Federico Canzian,1,2 Rudolf Kaaks,1 Abdelhamid Boumerit,1,3 and Elisabete Weiderpass4,5

1IARC, Lyon, France; 2German Cancer Research Center, Heidelberg, Germany; 3Department of Clinical Pharmacology, University of Oxford, Oxford, United Kingdom; 4Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; and 5The Cancer Registry of Norway, Oslo, Norway

Introduction

The major hypothesis proposed to explain endometrial cancer risk is the unopposed estrogen hypothesis which states that elevated levels of plasma estrogens not counterbalanced by high levels of plasma progesterone increase risk of endometrial cancer (1-3).

The action of progesterone on the endometrium is mediated by the progesterone receptor (hPR) that exists in two different forms (hPR-A and hPR-B), structurally similar except for their NH2 terminus (164 amino acids longer in hPR-B), which are the result of the transcription from two alternative promoters of the hPR gene and are expressed at approximately the same level in the endometrium. The isoform hPR-B is a transcriptional activator and stimulates epithelial cell growth of endometrium, whereas hPR-A is transcriptionally inactive and inhibits both the estrogen-induced and hPR-B-dependent proliferation of endometrium (4, 5).

Recently, in vitro studies by de Vivo et al. (6) showed that a single nucleotide polymorphism, +331G/A (rs10895068), in the promoter region of the progesterone receptor gene (PGR) increases transcription of the hPR-B form, relative to the hPR-A form.

De Vivo et al. also showed a positive association of this polymorphism with the risk of developing endometrial cancer in a case-control study of 187 endometrial cancer cases and 397 matched controls nested within the Nurses’ Health Study cohort (odds ratio, 1.90; 95% confidence interval, 1.10-3.29 for +331A carriers versus noncarriers). Other studies have addressed the relationship of the +331A variant with cancers of the ovary (7, 8) or breast (9-13) with variable results.

With the aim to confirm de Vivo et al.’s findings, we typed the +331G/A polymorphism in a case-control study of 275 endometrial cancer patients and 314 control subjects.

Materials and Methods

Study Population. Women were recruited from 12 Swedish counties between February 1996 and December 1997 (14). Women were eligible if they were born in Sweden, had no prior hysterectomy, and had no previous history of cancer.

Endometrial cancer cases were histopathologically confirmed. Population controls who were resident in the study area were randomly selected from continuously updated population register and frequency matched to cases by 5-year age group.

Blood samples from cases women were drawn at the hospital departments before surgery or any cancer treatment and from controls at a primary health care unit or at home.

The Ethical Committee, Uppsala University and the Ethical Committee, Karolinska Institutet, Stockholm, Sweden approved the study design. Only patients who gave informed consent were included in the study.

Laboratory Analysis. Leukocyte genomic DNA was extracted from whole blood (EDTA) according to standard procedures. Genotyping was done by the 5’ nuclease assay (Taqman), using locked nucleic acid chemistry, under conditions described elsewhere (15). Taqman primers and probes were designed and synthesized by Proligo (Paris, France). Their sequences are as follows: PCR primers, GAATGGGCTG-TACCGAG, GGCACCTGAGTGCGTGC; Taqman probes (a plus sign indicates the presence of locked nucleic acid–modified bases), FAM-ACGCCG+C+TCT+CT+T+TATCT, HEX-ACGCC+GC+TCT+TT+T+TATCT.

The order of DNAs from cases and controls was randomized on PCR plates to assure that an equal proportion of cases and controls could be analyzed simultaneously and duplicate genotyping done for 10% of the total series for quality control. Laboratory personnel was blinded to case-control status of samples. Genotyping call rate was 93.4%, and concordance rate of duplicated samples was 99.8%.

Statistical Analyses. A t test was used to test for differences in mean age and body mass index of cases and controls. Odds ratios were estimated using unconditional logistic regression models. The effect for age was examined by including an additional regression term into the logistic regression models. Association analyses were done under a dominant mode of inheritance effect, in accordance with the previous report of de Vivo et al. (6): disease risk was compared between subjects carrying at least one copy of the rare allele and those who had

<table>
<thead>
<tr>
<th>Table 1. Association of PGR polymorphism +331G/A with endometrial cancer risk: odds ratio (95% confidence interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>Noncarriers of +331A allele</td>
</tr>
<tr>
<td>Carriers of +331A allele</td>
</tr>
</tbody>
</table>

Cancer Epidemiol Biomarkers Prev 2006;15(7):1415–6
Received 3/22/06; accepted 5/19/06.

Grant support: Swedish Cancer Society.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C.

Section 1754 solely to indicate this fact.

Requests for reprints: Rudolf Kaaks, Nutrition and Hormones Group, IARC, 150 Cours Albert Thomas, 69372 Lyon CEDEX 08, France. Phone: 33-4-72-73-85-53; Fax: 33-4-72-73-83-61.
E-mail: kaaks@iarc.fr

Copyright © 2006 American Association for Cancer Research.

doi:10.1158/1055-9965.EPI-06-0215

Downloaded from cebp.aacrjournals.org on September 30, 2017. © 2006 American Association for Cancer Research.
Compared with control subjects, endometrial cancer cases and 8% of the controls carried the +331A allele. Approximately 9% of the cases and 6% of the controls were premenopausal. About 47% of the cases and 41% of the controls were estimated risk for carriers with body mass index over 28 kg/m². Pt test indicated an interaction between adiposity and women (odds ratio, 4.71; 95% confidence interval, 1.87-11.87), and resident in Sweden and >98% of the participants are White and experimental. Thus, bias from population is the great homogeneity of the population. One of the eligibility criteria of the study was that women were born on September 30, 2017. © 2006 American Association for Cancer Research.

Results and Conclusion

Compared with control subjects, endometrial cancer cases were older (median = 66.7 versus 64.0, P = 0.001) and had a greater body mass index (27.3 versus 25.4, P = 0.004). Prevalence of this study is that by de Vivo et al. was a case-control study nested within a cohort. Theoretically, a traditional case-control design could stratification is very unlikely. In conclusion, our results do not confirm previous findings of de Vivo et al. of an association between endometrial cancer risk and +331G/A polymorphism.

<table>
<thead>
<tr>
<th>Noncarriers of +331A allele</th>
<th>Carriers of +331A allele</th>
<th>P_interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI < 25</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>25 ≤ BMI ≤ 28</td>
<td>1.20 (0.76-1.91)</td>
<td></td>
</tr>
<tr>
<td>BMI > 28</td>
<td>2.27 (1.48-3.47)</td>
<td></td>
</tr>
<tr>
<td>Non-HRT users</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>HRT users</td>
<td>1.79 (1.25-2.57)</td>
<td></td>
</tr>
</tbody>
</table>

References

No Association between Progesterone Receptor Gene +331G/A Polymorphism and Endometrial Cancer

Laure Dossus, Federico Canzian, Rudolf Kaaks, et al.