Short Communication

Common Genetic Variation at PTEN and Risk of Sporadic Breast and Prostate Cancer

Christopher A. Haiman,1 Daniel O. Stram,1 Iona Cheng,1 Elena E. Giorgi,1 Loreall Pooler,1 Kathryn Penney,2 Loïc Le Marchand,3 Brian E. Henderson,1 and Matthew L. Freedman2,4,5,6,7

1Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California; 2Broad Institute of MIT and Harvard, Cambridge, Massachusetts; 3Etiology Program, Cancer Research Center of Hawaii, University of Hawaii, Honolulu, Hawaii; Departments of Medicine, Molecular Biology, and Hematology/Oncology, Massachusetts General Hospital, Boston, Massachusetts; and 4Dana-Farber Cancer Institute, Boston, Massachusetts

Abstract

PTEN frequently shows loss of heterozygosity in breast and prostate cancers, and mutations in this gene are responsible for Cowden disease, a rare Mendelian syndrome that includes breast cancer as part of its phenotype. Thus, PTEN serves as a candidate susceptibility gene for both breast and prostate cancer risk. Whether common inherited variation (either coding or noncoding) at the PTEN locus contribute to nonfamilial, sporadic breast and prostate cancer risk is not known. In this study, we employed a linkage disequilibrium–based approach to test for association between common genetic variation at the PTEN locus and breast and prostate cancer risk in African-American, Native Hawaiian, Japanese, Latina, and White men and women in the Multiethnic Cohort Study. We genotyped 17 common single nucleotide polymorphisms (SNP; ≥5% frequency in at least one ethnic group) spanning the PTEN gene to define the common alleles in these populations.

Introduction

PTEN (phosphatase and tensin homologue) encodes a dual-specificity protein phosphatase that negatively regulates phosphatidylinositol 3-kinase/AKT signaling, a pathway with an established role in promoting cell cycle progression and survival (1). Loss of PTEN protein expression in breast carcinomas has been associated with histologic features related to poor prognosis (2, 3). A large fraction of advanced prostate cancers also show loss of heterozygosity and reduced PTEN expression (4, 5).

Rare, germ line mutations in PTEN have been identified and result in Cowden disease, which is characterized by benign hamartomatous lesions and a 25% to 50% lifetime risk of developing breast cancer. Patients are also at risk for thyroid (and perhaps other) cancers (6). Twenty to 40% of Cowden’s disease families with linkage to the region containing PTEN at 10q23 do not have an identifiable mutation in PTEN (7), suggesting that variants in the promoter or other noncoding regions of PTEN may be biologically relevant (8).

In the broader context of the nonfamilial (sporadic) form of breast and prostate cancers, the relevance of common variants (both coding and noncoding) in PTEN to cancer risk is largely unknown (9-11). In the present study, we defined and tested the ancestral haplotype patterns at the PTEN locus in large multiethnic case-control studies of breast and prostate cancer to comprehensively assess the role of common genetic variation in this gene in relation to risk of these common cancers.

Materials and Methods

The Multiethnic Cohort. The Multiethnic Cohort Study (MEC) consists of >215,000 men and women in Hawaii and Los Angeles (with additional African Americans from elsewhere in California) and has been described in detail elsewhere (12). In brief, the cohort comprised a general population sample of African Americans, Native Hawaiians, Japanese, Latinos, and Whites who entered the MEC between 1993 and 1996, by completing a 26-page self-administered questionnaire that asked detailed information about dietary habits, demographic factors, behavioral characteristics, history of prior medical conditions, family history of common cancers, and for women, reproductive history and exogenous hormone use. The participants were between the ages 45 and 75 years at enrollment.

Incident cancers in the MEC are identified by cohort linkage to population-based cancer Surveillance, Epidemiology, and Prevention Online (http://cebp.aacrjournals.org/).
In this study, we implemented a haplotype-based approach to comprehensively examine common genetic variation throughout the PTEN gene as described in detail previously (13, 14). We initially surveyed common genetic variation across 146.5 kb of the PTEN gene, using markers from the public single nucleotide polymorphism (SNP) map. Our goals were to capture the common haplotypes patterns across the PTEN locus. To do this, we genotyped 17 common SNPs across the locus (frequency of ≥5% in at least one ethnic group) selected from the National Center of Biotechnology Information SNP database (http://www.ncbi.nlm.nih.gov/SNP/). SNPs were genotyped in a multiethnic panel of 349 women in the MEC without a history of cancer (n = 69-70 per ethnic group). This sample size guaranteed that any haplotype with a frequency of ≥5% will be represented at least once among the 140 chromosomes with a probability of >99%.

The \(r^2 \) and \(D' \) statistics were used to assess pairwise linkage disequilibrium between SNPs as described (14). Linkage disequilibrium block structure was examined using the 90% confidence bounds of \(D' \) to define sites of historical recombination between SNPs with minor allele frequencies of ≥10% (15).

Haplotype Construction and Tagging SNP Selection

Haplotype frequency estimates were constructed from the genotype data in the multiethnic panel (one ethnicity at a time) within linkage disequilibrium blocks using the expectation-maximization algorithm of Excoffier and Slatkin (16). The squared correlation \((R^2) \) between the true haplotypes \((h) \) and their estimates were then calculated as described (17). Haplotype-tagging SNPs for the case-control study were then

Table 1. Associations between PTEN haplotypes and breast cancer risk

<table>
<thead>
<tr>
<th>SNP no.</th>
<th>rs1234212</th>
<th>rs11202586*</th>
<th>rs1234221*</th>
<th>rs1903860*</th>
<th>rs1234220*</th>
<th>rs1234219*</th>
<th>rs1903858</th>
<th>rs2299939*</th>
<th>rs1234224*</th>
<th>rs1234223</th>
<th>rs1234213</th>
<th>rs2673832*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>T</td>
<td>A</td>
<td>T</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>T</td>
<td>C</td>
<td>T</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>T</td>
<td>A</td>
<td>T</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>T</td>
<td>A</td>
<td>T</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>T</td>
<td>C</td>
<td>A</td>
<td>T</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>G</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>T</td>
<td>C</td>
<td>A</td>
<td>T</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>G</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>C</td>
<td>T</td>
<td>A</td>
<td>T</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>C</td>
<td>G</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>T</td>
<td>T</td>
<td>A</td>
<td>T</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>C</td>
<td>G</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>T</td>
<td>T</td>
<td>A</td>
<td>T</td>
<td>A</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: AA, African Americans; NH, Native Hawaiians; JA, Japanese; LA, Latinas; WH, Whites.

*Tagging SNPs.

Haplotypes frequencies estimated among cases and controls using tagging SNPs.

ORs estimated using unconditional logistic regression adjusted for age and ethnicity. Noncarriers of each haplotype constitute the reference group.

Table 2. Associations between PTEN haplotypes and prostate cancer risk

<table>
<thead>
<tr>
<th>SNP no.</th>
<th>rs1234212</th>
<th>rs11202586*</th>
<th>rs1234221*</th>
<th>rs1903860*</th>
<th>rs1234220*</th>
<th>rs1234219*</th>
<th>rs1903858</th>
<th>rs2299939*</th>
<th>rs1234224*</th>
<th>rs1234223</th>
<th>rs1234213</th>
<th>rs2735343*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>T</td>
<td>A</td>
<td>T</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>T</td>
<td>C</td>
<td>T</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>T</td>
<td>A</td>
<td>T</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>T</td>
<td>A</td>
<td>T</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>T</td>
<td>A</td>
<td>T</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>G</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>T</td>
<td>C</td>
<td>A</td>
<td>T</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>G</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>T</td>
<td>C</td>
<td>A</td>
<td>T</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>G</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>T</td>
<td>T</td>
<td>A</td>
<td>T</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>C</td>
<td>G</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>T</td>
<td>T</td>
<td>A</td>
<td>T</td>
<td>A</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: AA, African Americans; NH, Native Hawaiians; JA, Japanese; LA, Latinas; WH, Whites.

*Tagging SNPs.

Haplotypes frequencies estimated among cases and controls using tagging SNPs.

ORs estimated using unconditional logistic regression adjusted for age and ethnicity. Noncarriers of each haplotype constitute the reference group.

OR estimated among African Americans.
cases and controls were estimated using the tag SNPs selected
haplotype frequencies among
well the chosen tagging SNPs were correlated with the variants
Taqman allelic discrimination assay using the ABI 7900
¶
haplotype discovery was done by time-of-flight mass spec-
8.2 for all analyses (SAS Institute, Inc., Cary, NC).
P (equivalent to P) accounted for by applying a permutation-based framework.
varied by age or ethnicity. Multiple testing was explicitly
for heterogeneity was done to examine whether the effects
haplotypes found to be nominally associated with risk, a test
ORs are presented adjusted for ethnicity and age. For
were examined in ethnic-stratified analyses, and summary
haplotype using unconditional logistic regression. Associa-
estimate haplotype-specific odds ratios (OR; refs. 14, 18). ORs
no association between haplotypes and cancer risk and
methods described by Zaykin et al. to perform global tests of
haplotypes differed between cases and controls. We used the
each ethnic group. We first did a global likelihood ratio test
Comparison of Tagging SNP and Haplotype Frequencies
between Cases and Controls. Haplotype frequencies among
cases and controls were estimated using the tag SNPs selected
to distinguish the common haplotypes ($\geq5\%$ frequency) for
each ethnic group. We first did a global likelihood ratio test
to test whether the frequency distributions of the common haplotypes differed between cases and controls. We used the
methods described by Zaykin et al. to perform global tests of
no association between haplotypes and cancer risk and estimate haplotype-specific odds ratios (OR; refs. 14, 18). ORs
and 95% confidence intervals (95% CI) were estimated for each
haplotype using unconditional logistic regression. Associa-
tions with both the tagging SNPs and common haplotypes
were examined in ethnic-stratified analyses, and summary
ORs are presented adjusted for ethnicity and age. For
haplotypes found to be nominally associated with risk, a test
for heterogeneity was done to examine whether the effects
varied by age or ethnicity. Multiple testing was explicitly
accounted for by applying a permutation-based framework.
Permutation testing revealed that $P = 0.003$ for breast and
prostate cancer should define results as statistically significant
(equivalent to $P = 0.05$ for the locus accounting for the number
of tests done). We used the Statistical Analysis System, version
8.2 for all analyses (SAS Institute, Inc., Cary, NC).

Genotyping. Genotyping for linkage disequilibrium and haplotype discovery was done by time-of-flight mass spec-
trometry using the Sequenom platform at the Broad Institute.
Genotyping of the tag SNPs was done by the 5’ nuclease
Taqman allelic discrimination assay using the ABI 7900
(Applied Biosystems, Foster City, CA) in the University of
Southern California Genomics Center. Replicate blinded
quality control samples were included to assess reproducibility
of the genotyping procedure; concordance was $>99\%$ in the
multiethnic panel and in the case-control studies. All tag SNPs
were in Hardy-Weinberg equilibrium among controls in at
least four of the five ethnic groups ($P > 0.05$).

Results
Characterization of Linkage Disequilibrium and Common Haplotype Patterns. Our goal was to genotype at least six
high-frequency markers ($\geq10\%$) in regions of strong linkage
disequilibrium to maximize the likelihood of capturing the
common genetic diversity (see Materials and Methods and
ref. 15). The 17 SNPs genotyped were in strong linkage
disequilibrium (Table 1) and spanned from 14.3 kb upstream
through 5.7 kb downstream of the $PTEN$ gene (total distance =
123.0 kb; average spacing of one common SNP every \sim7.2 kb).
The frequency of these markers in each population and the
linkage disequilibrium plot are provided in Supplementary
Table S1 and in Supplementary Fig. S1, respectively.
In this region of strong linkage disequilibrium, we observed
a total of nine common haplotypes (frequency of $\geq5\%$) among
the populations in the multiethnic panel. These haplotypes
accounted for at least 87% of all chromosomes in each ethnic
group except African Americans (72%); the remaining chro-
omes were comprised of haplotypes with frequencies of
$<5\%$ in all populations. Only one haplotype was present in one
ethnic group (haplotype 5 among African Americans) at an
appreciable frequency.
We selected 10 markers as tagging SNPs that strongly predicted
these common haplotypes (Table 1); SNPs rs1234221 and
rs1234224 were only required for African Americans. The
average R_s^2 in predicting the common haplotypes across
all ethnic groups was 0.91, and we observed only minor

Table 1. Associations between $PTEN$ haplotypes and breast cancer risk (Cont’d)

<table>
<thead>
<tr>
<th>rs2735343*</th>
<th>rs926091</th>
<th>rs532678</th>
<th>rs701848*</th>
<th>rs478839</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>AA</td>
<td>NH</td>
<td>IA</td>
<td>LA</td>
<td>WH</td>
</tr>
<tr>
<td>(n = 345/346)</td>
<td>(n = 109/290)</td>
<td>(n = 425/420)</td>
<td>(n = 335/386)</td>
<td>(n = 401/440)</td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>G</td>
</tr>
<tr>
<td>0.05/0.05</td>
<td>0.13/0.12</td>
<td>0.18/0.20</td>
<td>0.20/0.24</td>
<td>0.19/0.20</td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>G</td>
</tr>
<tr>
<td>0.04/0.05</td>
<td>0.39/0.43</td>
<td>0.24/0.23</td>
<td>0.17/0.12</td>
<td>0.18/0.22</td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>C</td>
<td>T</td>
<td>A</td>
</tr>
<tr>
<td>0.34/0.34</td>
<td>0.08/0.06</td>
<td>0.05/0.05</td>
<td>0.10/0.09</td>
<td>0.16/0.14</td>
</tr>
<tr>
<td>G</td>
<td>C</td>
<td>C</td>
<td>T</td>
<td>A</td>
</tr>
<tr>
<td>0.06/0.08</td>
<td>0.09/0.10</td>
<td>0.79/0.61</td>
<td>1.08/1.02</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>T</td>
<td>T</td>
<td>A</td>
</tr>
<tr>
<td>0.05/0.05</td>
<td>0.34/0.34</td>
<td>0.19/0.19</td>
<td>0.14/0.13</td>
<td>0.84 (0.70-1.02)</td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>T</td>
<td>T</td>
<td>A</td>
</tr>
<tr>
<td>0.07/0.05</td>
<td>0.06/0.06</td>
<td>1.12 (0.86-1.47)</td>
<td>0.84 (0.52-1.37)</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>T</td>
<td>T</td>
<td>A</td>
</tr>
<tr>
<td>0.07/0.07</td>
<td>0.09/0.09</td>
<td>0.14/0.16</td>
<td>0.07/0.05</td>
<td>0.87 (0.71-1.05)</td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>T</td>
<td>T</td>
<td>A</td>
</tr>
<tr>
<td>0.20/0.22</td>
<td>0.05/0.05</td>
<td>0.98 (0.79-1.23)</td>
<td>0.65 (0.35-1.23)</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Associations between $PTEN$ haplotypes and prostate cancer risk (Cont’d)

<table>
<thead>
<tr>
<th>rs2673832*</th>
<th>rs926091</th>
<th>rs532678</th>
<th>rs701848*</th>
<th>rs478839</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>AA</td>
<td>NH</td>
<td>IA</td>
<td>LA</td>
<td>WH</td>
</tr>
<tr>
<td>(n = 683/650)</td>
<td>(n = 71/68)</td>
<td>(n = 462/471)</td>
<td>(n = 647/649)</td>
<td>(n = 457/452)</td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>G</td>
</tr>
<tr>
<td>0.04/0.05</td>
<td>0.12/0.13</td>
<td>0.18/0.20</td>
<td>0.23/0.23</td>
<td>0.16/0.18</td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>G</td>
</tr>
<tr>
<td>0.05/0.05</td>
<td>0.37/0.38</td>
<td>0.25/0.24</td>
<td>0.14/0.13</td>
<td>0.22/0.20</td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>C</td>
<td>T</td>
<td>A</td>
</tr>
<tr>
<td>0.33/0.34</td>
<td>0.06/0.02</td>
<td>0.06/0.06</td>
<td>0.10/0.11</td>
<td>0.15/0.16</td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>T</td>
<td>T</td>
<td>A</td>
</tr>
<tr>
<td>0.05/0.06</td>
<td>0.08/0.07</td>
<td>0.11/0.11</td>
<td>0.11/0.11</td>
<td>0.94 (0.77-1.16)</td>
</tr>
<tr>
<td>A</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>A</td>
</tr>
<tr>
<td>0.08/0.08</td>
<td>0.25/0.26</td>
<td>0.35/0.32</td>
<td>0.16/0.17</td>
<td>0.15/0.13</td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>T</td>
<td>T</td>
<td>A</td>
</tr>
<tr>
<td>0.06/0.05</td>
<td>0.05/0.06</td>
<td>0.96 (0.76-1.21)</td>
<td>0.60 (0.35-1.03)</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>T</td>
<td>T</td>
<td>A</td>
</tr>
<tr>
<td>0.22/0.20</td>
<td>0.07/0.09</td>
<td>0.08/0.08</td>
<td>0.17/0.15</td>
<td>0.07/0.07</td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>T</td>
<td>T</td>
<td>A</td>
</tr>
<tr>
<td>0.05/0.04</td>
<td>1.10 (0.91-1.30)</td>
<td>1.06 (0.89-1.26)</td>
<td>0.68 (0.43-1.08)</td>
<td>1.16 (0.69-1.97)</td>
</tr>
</tbody>
</table>
differences in haplotype frequencies predicted solely by the tagging set of SNPs versus haplotype frequencies as defined by all of the SNPs (Table 1). To assess how well the 10 tagging SNPs captured the unmeasured SNPs (the remaining seven SNPs in the linkage disequilibrium block), we computed the pairwise r^2 values (correlations) of the tag SNPs to each unmeasured variant. All r^2 values were >0.82 (average r^2 across populations for the unmeasured SNPs = 0.97); thus, we believe that the chosen tagging SNPs (and the haplotypes they define) provide a thorough representation of common variation at this locus.

Associations of Tagging SNPs and Common Haplotypes and Breast Cancer Risk. The distribution of baseline characteristics in breast cancer cases and controls for each ethnic group is provided in Supplementary Table S2. In the haplotype analysis, the overall distribution of haplotypes between breast cancer cases and controls was not statistically significant (P = 0.27). Because this test examines the global distribution of the haplotypes, it could potentially miss risk effects of individual haplotypes. Therefore, we also evaluated the effects of individual haplotypes on cancer risk. We observed homozygous carriers of haplotype 8 (OR, 2.82; 95% CI, 1.26-6.33; $P_{\text{nominal}} = 0.01$) to have a modest increase in risk compared with noncarriers, although this did not reach statistical significance based on our previously defined threshold (see Materials and Methods). The heterozygous status was not associated with increased risk (P = 0.15; Table 2). Testing of individual SNPs 4 and 5, which were highly correlated with haplotype 8 (and each other), was similarly associated with increased risk (SNP4, rs1234220 (intron 1); GG versus AA genotypes, OR = 2.09; 95% CI, 1.20-3.63; P = 0.009; SNP5, rs1234219 (intron 1); GG versus AA genotypes, OR = 2.11; 95% CI, 1.38-3.28; P = 0.01). We found no evidence that these effects varied significantly across ethnic groups or by age (data not shown). These modest effects were attenuated when limiting the analysis to women with advanced disease (cases, n = 447), and no significant associations were noted between any of the remaining tag SNPs or common haplotypes and breast cancer risk (data not shown).

Associations of Tagging SNPs and Common Haplotypes and Prostate Cancer Risk. The distribution of baseline characteristics in prostate cancer cases and controls for each ethnic group is provided in Supplementary Table S3. In an identical analysis of the common haplotypes (and tagging SNPs) in PTEN, we observed no strong haplotype or SNP effects in relation to prostate cancer risk. The global test of haplotype effects was not significant (P = 0.33). We observed a modest positive association limited to men homozygous for haplotype 4 (versus noncarriers: OR, 2.70; 95% CI, 1.13-6.47; P = 0.03) and SNP 9 (rs2673832, intron 6), which predicts this haplotype ($P_{\text{nominal}} = 0.03$). The heterozygous state was not associated with increased risk (P = 0.54). We found no evidence that these effects varied significantly across ethnic groups or by age (data not shown). None of the other tagging SNPs tested individually revealed significant associations, and significant effects were not observed among men with advanced disease (cases, n = 762; data not shown).

Discussion

Application of linkage analysis in hereditary cancer syndromes has successfully identified numerous loci, thereby offering tremendous insight into the genetic causes of cancer predisposition. These syndromes are typically caused by a single locus and only account for a small fraction of all cancer cases. The bulk of cancers that are diagnosed and treated in clinics, however, do not follow clear cut Mendelian modes of transmission and arise from the contribution of low penetrant alleles at multiple loci as well as the environment. Recent large-scale efforts to determine the structure and content of common genetic variation in the human genome now permit us to thoroughly test the contributions of common inherited variation to sporadic cancer.

Due to its role in Cowden syndrome and its frequent loss of expression in advanced prostate cancers, the PTEN gene is a particularly strong candidate in which to assess the effect of common variation on breast and prostate cancer risk. Previous studies investigating the role of germ line polymorphisms in the PTEN gene have focused on a very small number of candidate noncoding variants because no common amino acid altering variants have been identified (http://www.genome. uth.edu/genesnps; refs. 9, 19). No associations with breast or prostate cancer risk have been reported; however, these studies have not been comprehensive with respect to surveying common genetic variation. Our results lend conclusive support to previous studies showing no strong associations between common inherited variation in PTEN and sporadic breast or prostate cancer risk. Conditioning on the alpha levels defined by the permutation test as the criteria for a significant association (P = 0.003), we calculated that in this study, we had 90% power to detect relative risks of 1.44 (breast) and 1.38 (prostate) for a dominant allele with a frequency of 10% (assuming an R_0 of 0.9) and 90% power to detect relative risks of 3.10 (breast) and 2.82 (prostate) for a recessive allele with a frequency of 10%. Although some alleles showed nominally significant associations (P = 0.01 for haplotype 8 for breast cancer and P = 0.03 for haplotype 4 for prostate cancer), the magnitude of these Ps would not be unexpected given the number of tests that we did, and based on our permutation testing, we did not consider these findings statistically significant.

We acknowledge that this locus may still prove to be involved in breast and prostate cancer risk. Specifically, many rare (<5%) variants (that our sample size is not adequately powered to test) may contribute to disease. To address this hypothesis, however, large-scale resequencing efforts (to discover the rare variants) and testing of these variants in even larger studies, such as the National Cancer Institute’s Breast and Prostate Cancer Cohort Consortium (http://epi.grants.cancer.gov/BPC3/), will be required. In summary, our data do not support a significant contribution of inherited variation in PTEN to the risk of sporadic breast or prostate cancer.

Acknowledgments

We thank the participants of the MEC for their participation and commitment, Stephanie Riley and David Wong for their laboratory assistance, and Dr. Kristine Monroe and Hank Huang for their help with the study design.

References

Common Genetic Variation at PTEN and Risk of Sporadic Breast and Prostate Cancer

Christopher A. Haiman, Daniel O. Stram, Iona Cheng, et al.

Updated version
Access the most recent version of this article at:
http://cebp.aacrjournals.org/content/15/5/1021

Supplementary Material
Access the most recent supplemental material at:
http://cebp.aacrjournals.org/content/suppl/2006/05/15/15.5.1021.DC1

Cited articles
This article cites 19 articles, 12 of which you can access for free at:
http://cebp.aacrjournals.org/content/15/5/1021.full.html#ref-list-1

Citing articles
This article has been cited by 3 HighWire-hosted articles. Access the articles at:
/content/15/5/1021.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.