CYP2A6 Genotype, Phenotype, and the Use of Nicotine Metabolites as Biomarkers during Ad libitum Smoking

Viba Malaiyandi,1 Shari D. Goodz,1 Edward M. Sellers,2 and Rachel F. Tyndale1

1Department of Pharmacology, Centre for Addiction and Mental Health, University of Toronto and
2Ventana Clinical Research, Toronto, Ontario, Canada

Abstract

CYP2A6 inactivates nicotine to cotinine and cotinine to 3-hydroxycotinine. We investigated which of plasma nicotine and metabolites were most related to CYP2A6 genotype and smoking levels. We assessed demographic and smoking histories in 152 Caucasian ad libitum smokers, measured breath carbon monoxide (CO) levels, and determined plasma nicotine, cotinine, and 3-hydroxycotinine by high-performance liquid chromatography and CYP2A6 genotypes by PCR. Cigarettes per day was most closely related to CO (r = 0.60, P < 0.001) followed by plasma cotinine (r = 0.53, P < 0.001), whereas plasma cotinine was most strongly correlated with CO levels (r = 0.74, P < 0.001), confirming that cotinine is a good indicator of smoking levels; this was not limited by CYP2A6 variants. 3-Hydroxycotinine/cotinine is reported to be a good marker of CYP2A6 activity, and we found that the 3-hydroxycotinine/(cotinine + nicotine) ratio was most correlated with CYP2A6 genotype (r = 0.38, P < 0.001). Inclusion of the CYP2A6*12A allele strengthened the correlation (r = 0.46, P < 0.001), suggesting that the identification of novel alleles will continue to improve this relationship. Nicotine metabolism is slower in smokers, and we have shown that CYP2A6 is reduced by nicotine treatment in monkeys. Here, we found that plasma nicotine levels were inversely correlated with CYP2A6 activity (3-hydroxycotinine/cotinine, r = −0.41, P < 0.001) among those without CYP2A6 variants, suggesting a reduction in metabolism with higher nicotine levels. Together, these findings (a) confirm the use of plasma cotinine and CO as indicators of Caucasians’ smoking levels, and that this is not limited by CYP2A6 genetic variation; (b) indicate that 3-hydroxycotinine/cotinine and 3-hydroxycotinine/cotinine + nicotine are moderately good indicators of the CYP2A6 genotype; and (c) support that nicotine exposure may reduce its own metabolism. (Cancer Epidemiol Biomarkers Prev 2006;15(10):1812–9)

Introduction

In humans, the major nicotine-metabolizing (1) and cotinine-metabolizing enzyme is cytochrome P450 2A6 (CYP2A6; refs. 2-5). CYP2A6 exhibits a narrow substrate spectrum, having a major role only in the metabolism of coumarin, a major caffeine metabolite 1,7-dimethylxanthine, a few pharmaceutical compounds including nicotine, (+)-cis-3,5-dimethyl-2-(3-pyridyl)thiazolidin-4-one hydrochloride (SM-12502), Tegafur, and tobacco-specific nitrosamines such as 4-(methyl-nitrosamino)-1-(3-pyridyl)-1-butanone and N’-nitrosornicotine (6, 7). In humans, ~70% to 80% of nicotine is metabolized to cotinine in vivo (5), and roughly 90% of this conversion is mediated by CYP2A6 (4, 8). Cotinine is subsequently oxidized, a step catalyzed virtually exclusively by CYP2A6 to form 3-hydroxycotinine (3, 9). Substantial variation in CYP2A6 activity and protein levels exist using coumarin (10, 11) and nicotine (5, 9) as substrates; this variation has been largely attributed to genetic polymorphisms in the CYP2A6 gene (12).

There are >20 established CYP2A6 alleles (http://www.imm.ki.se/CYPalleles/cyp2a6.htm); some have been characterized in vitro and/or in vivo and result in absent, reduced, increased, or normal enzyme activity. Reduction in the rates of nicotine metabolism, due to CYP2A6 genetic polymorphisms (13, 14), has been shown to be associated with a reduced risk for being a current smoker, reduced amounts of daily smoking among smokers, reduced smoking intensity, and increased quitting (15-20). However, not all studies are in agreement with these findings (21, 22).

Carbon monoxide (CO) and cotinine are good indicators of smoking levels (23-25); however, CYP2A6 genetic variants alter nicotine and cotinine metabolism and smoking behaviors (12, 19). Our first aim was to evaluate measures of plasma nicotine, cotinine, 3-hydroxycotinine, and their ratios as biomarkers of smoking levels and to determine whether the CYP2A6 genetic variants limit the use of these as indicators in Caucasian ad libitum smokers.

A second objective was to determine whether plasma nicotine, its metabolites, or metabolite ratios, measured during ad libitum smoking, were related to CYP2A6 genotype and could serve as an indicator of phenotype. Typically, phenotyping involves the administration of a specific amount of a probe drug that is selectively metabolized by the enzyme of interest and is not present in the study participants before the administration. A plasma or urine sample is collected at a specific time; the parent drug and the metabolite levels are assessed; and the metabolite ratio calculated providing an index of their in vivo phenotype (26, 27). Coumarin 7-hydroxylation is mediated by CYP2A6; whereas coumarin could be used in smokers, it is a poor probe drug as it is highly extracted (28), limiting its use to distinguish intermediate, normal, and fast CYP2A6 activity. In addition, some CYP2A6 genetic variants alter coumarin metabolism differently than nicotine metabolism, and smokers have reduced rates of metabolism. The metabolic ratio of cotinine/nicotine is used as an indicator of CYP2A6 activity (5, 14); however, this ratio is not ideal for assessing CYP2A6 activity during ad libitum smoking as it is very sensitive to the timing of the last exposure...
to nicotine. This is due to the large difference in half-lives between nicotine and cotinine: 1 to 2 hours versus 13 to 19 hours, respectively (5). Recently, the 3-hydroxycotinine/cotinine ratio was found to be highly correlated with oral nicotine clearance \((r = 0.76-0.83, P < 0.01; \text{ref. } 9)\); however, this was done in a controlled kinetic study using orally given labeled nicotine and cotinine, not during ad libitum smoking. Pilot data in 14 smokers in the same study suggested that the 3-hydroxycotinine/cotinine ratio derived from tobacco smoke nicotine was also correlated with oral nicotine clearance \((r = 0.70-0.95, P < 0.01; \text{ref. } 9)\). Smokers have a difficult time abstaining for long periods of time (as cotinine is cleared), making controlled kinetic studies in abstainers difficult. In addition, the rates of nicotine metabolism are slower during smoking, suggesting that to understand nicotine metabolism in smokers, they have to be smoking. Therefore, our second aim was to assess the relationship between the \(\text{CYP2A6}^*\) genotype groups and measures of plasma nicotine, its metabolites (cotinine and 3-hydroxycotinine), and the metabolite ratios. We also assessed the effect of the \(\text{CYP2A6}^*12A\) variant, which reduces coumarin metabolism (29), but its effect on nicotine metabolism has not yet been determined.

Lastly, nicotine metabolism is reduced during smoking, using deuterium-labeled (S)-nicotine (30, 31). CO (from tobacco smoke) and cotinine did not alter nicotine metabolism in vivo (31, 32); however, we have shown, in a monkey model, that chronic nicotine treatment alone results in decreased nicotine C-oxidation and \(\text{CYP2A6}\) protein levels (33). Therefore, a final objective of this study was to assess whether \(\text{CYP2A6}\) activity is inversely related to nicotine plasma levels during ad libitum smoking.

Materials and Methods

Study Population. Subjects were recruited at the Sunnybrook and Women’s College Health Science Centre in Toronto, Canada by flyers and newspaper advertisements. Participants reporting having three or more grandparents of Caucasian ethnicity \((N = 152)\) were included. Participants were 18 to 73 years of age and current smokers. Male subjects \((n = 82)\) had an average age \(\pm SD\) of 38.3 \(\pm 12.8\), and female subjects \((n = 69)\) had an average age of 36.5 \(\pm 12.0\). Gender data were missing for one subject. Participants reported smoking an average \(\pm SD\) of 19.5 \(\pm 12.5\) cigarettes per day (CPD). Participants signed a written consent form and answered a demographic questionnaire that also assessed their history and patterns of smoking, as previously described (19). Participants provided blood samples between 4 and 8 PM for \(\text{CYP2A6}\) genotyping and for nicotine, cotinine, and 3-hydroxycotinine plasma measures and were assessed for breath CO using the Micro II Smokelyzer (Bedford Science Ltd., Upchurch, England). The study was approved by the Ethics Review Committee of the Sunnybrook and Women’s College Health Science Centre.

Genotyping of the Samples. Blood samples were stored at \(-80^\circ\)C. Genomic DNA isolation was done using the Sigma kit for DNA extraction (GenElute Mammalian Genomic DNA kit, Sigma-Aldrich Co., Canada Ltd., Oakville, Ontario, Canada). \(\text{CYP2A6}^*2, \text{CYP2A6}^*4, \text{CYP2A6}^*5, \text{CYP2A6}^*6, \text{CYP2A6}^*7, \text{CYP2A6}^*8, \text{CYP2A6}^*9A, \text{CYP2A6}^*10,\) and \(\text{CYP2A6}^*12A\) alleles were assessed by two-step allele-specific PCR assays as previously described (19, 34).

Measurement of Samples: Liquid-Liquid and Solid-Phase Extraction Procedures. Plasma samples were kept at \(-20^\circ\)C and thawed at room temperature. Drug concentrations were assessed using high-performance liquid chromatography (HPLC) with UV detection (35-37). First, nicotine, cotinine, and 3-hydroxycotinine levels were measured with a solid-phase extraction assay modified from previously published procedures (36, 37), and then, for a comparison of the results, the levels of nicotine and cotinine were also measured with a liquid-liquid extraction procedure, which has poor recoveries of 3-hydroxycotinine, described by Harirhan et al. (35). Plasma samples \((0.5 \text{ mL})\) were incubated at 37°C for 24 hours with 0.25 mL of \(\beta\)-glucuronidase enzyme \((\text{type H-1, Helix Pomatia, Sigma, St. Louis, MO})\) diluted in acetate buffer \((0.2 \text{ mol/L}, \text{pH } 5; \text{final concentration } = 15 \text{ mg/mL})\) to allow for maximum deconjugation of the drugs. Briefly, for the solid-phase extraction assay, the samples received 50 \(\mu\)L of 5-methylcotine \((\text{the internal standard, } 1.2 \mu\text{g/mL})\) and 0.6 mL of \(\text{NaOH}\) \((0.2 \text{ mol/L})\) for a final sample volume of 1.45 mL. The plasma samples were then transferred to the VacMaster 20 sample processing station and allowed to absorb into the sorbent bed \((\text{modified form of diatomaceous earth})\) of the Isolute HM-N SPE \((3.0 \text{ mL sample})\) column (Chromatographic Specialties, Inc., Brockville, Ontario, Canada) for 15 minutes. Methanolic hydrochloric acid \((300 \mu\text{L}, 20 \text{ mmol/L})\) was added to the 12-ML conical polypropylene collection tubes, and the drugs were eluted under gravity with 13 mL of dichloromethane/2-propanol \((24:1, v/v)\). Following the evaporation of the eluent under nitrogen at 40°C, the crystallized samples were reconstituted in 105 mL of 0.01 N HCl, and 90 mL were injected into a Supelco LC8DB steel column \((150 \times 4.6 \text{ mm}, 5-\mu\text{m particle size})\) of the HPLC-UV system. The mobile phase was composed of a citric acid buffer/acetonitrile mixture \((100:7, v/v)\). The citric acid buffer was prepared by combining 0.034 mol/L citric acid \((\text{BDH, Inc., Toronto, Ontario, Canada})\), 0.034 mol/L potassium phosphate monobasic \((\text{Mallinkrodt, St. Louis, MO})\), 67 mg/L of heptanesulfonic acid \((\text{Sigma})\), and 5 mL/L of triethylamine \((\text{Sigma})\) with water. KOH \((5 \text{ N})\) was used to adjust the pH to 4.62. Acetonitrile \((70 \text{ mg/L})\) was added to obtain the desired mobile phase solution. The flow rate was set at 1 mL/min, and UV detection was monitored at 260 nm. Plasma standard curves for nicotine, cotinine, and 3-hydroxycotinine were prepared using blank plasma samples \((0.5 \text{ mL})\) added to 50 \(\mu\)L of drug \((\text{nicotine: } 0-80 \text{ ng/mL}, \text{cotinine: } 1-400 \text{ ng/mL}, \text{3-hydroxycotinine: } 0-160 \text{ ng/mL})\).

Statistical Analyses. The Kolmogorov-Smirnov test was conducted to determine the normality of the data. Measures that were not normally distributed were transformed into logarithmic form \((\text{all ratios})\), and those that were normally distributed were not transformed \((\text{plasma nicotine, cotinine, and 3-hydroxycotinine concentrations})\). Pearson’s correlation analysis was done to assess whether plasma measures of nicotine, and log metabolite ratios were correlated with smoking level \((\text{assessed by level of CPD or CO})\). MedCalc for Windows, demo version 7.4.1.0 \((\text{MedCalc Software, Mariakerke, Belgium})\) statistical analysis software was used to determine whether differences in correlation coefficients reached significance. Unpaired Student’s \(t\) tests were conducted to compare the mean log 3-hydroxycotinine/cotinine ratio between \(\text{CYP2A6}^*1/1\) and \(\text{CYP2A6}^*1/12A\) individuals. Student’s \(t\) tests were preceded by F-tests to determine whether the variance was equal for both \(\text{DNA}\). This was followed by Bonferonni’s multiple comparison test was used to determine differences in 3-hydroxycotinine/(cotinine + nicotine) by \(\text{CYP2A6}\) genotype groups. Pearson’s correlation analysis was also conducted to determine whether plasma measures of nicotine and metabolite ratios were related to \(\text{CYP2A6}\) genotype groups and whether a relationship existed between \(\text{CYP2A6}\) activity and nicotine levels. All statistical analyses were conducted using GraphPad Prism version 4.03 \((\text{San Diego, CA})\).

Results

Detection of Nicotine, Cotinine, and 3-Hydroxycotinine in the Plasma of Smokers. Sensitivity of the solid-phase
Indicators of Genotype. The effect of the CYP2A6*12A variant on nicotine metabolism was assessed by the 3-hydroxycotinine/cotinine ratio, an indicator of CYP2A6 activity towards nicotine (9). Individuals with a CYP2A6*1/ *12A genotype had lower log 3-hydroxycotinine/cotinine ratios (mean ± SD) compared with those with a CYP2A6*1/ *1 genotype (−0.69 ± 0.13 versus −0.31 ± 0.23, respectively; P < 0.001; Fig. 2). Two subjects with a CYP2A6*12A allele also had additional decreased function alleles; their 3-hydroxycotinine/cotinine ratios were very low, indicating a gene-dose effect on this ratio (Fig. 2).

To investigate the association among CYP2A6 genotype, plasma measures, and metabolite ratios, participants were classified into genotype groups, based on the known in vivo and/or in vitro effect on enzyme function of each CYP2A6 allele (9, 38-40). Based on our present findings for nicotine and those reported previously for coumarin (29), participants who were heterozygous for the CYP2A6*12A variant were grouped among those expected to have 60% to 70% remaining activity. The four different genotype groups, the expected activity, and the genotypes included in each cluster are described in Table 2.

We found that the 3-hydroxycotinine/cotinine and 3-hydroxycotinine/(cotinine + nicotine) showed the strongest correlations with CYP2A6 genotype group (r = 0.35, P < 0.001 and r = 0.38, P < 0.001, respectively; Table 3). Figure 3 illustrates the relationship between CYP2A6 genotype groups and the 3-hydroxycotinine/(cotinine + nicotine) ratios after including the CYP2A6*12A genotyping. Correlations with CYP2A6 genotype group for both 3-hydroxycotinine/cotinine (r = 0.43, P < 0.001) and for 3-hydroxycotinine/(cotinine + nicotine; r = 0.46, P < 0.001) were improved, although the difference (with versus without CYP2A6*12A genotyping) in correlation coefficients did not reach significance (Table 3). There was a significant difference in the ANOVA among the four genotype groups (P < 0.001), with groups 1 (P < 0.01), 2 (P < 0.001), and 3 (P < 0.001) being significantly lower than group 4, the group without detected variants. The observed effect of each genotype group on activity [3-hydroxycotinine/(cotinine + nicotine); Fig. 3] is consistent with the predicted effects (Table 3) with groups 3, 2, and 1 having 63%, 48%, and 30%, respectively, remaining activity of group 4 (100% activity).

We have previously compared genetically slow metabolizers (those with <50% activity; our Table 2, groups 1 and 2 combined) with normal metabolizers, those without detected variants (Table 2, group 4; refs. 19, 41). Using plasma ratios, we found that both the log 3-hydroxycotinine/cotinine ratio and the log 3-hydroxycotinine/(cotinine + nicotine) were significantly lower for slow metabolizers relative to normal metabolizers (−0.65 versus −0.31, P < 0.001; −0.70 versus −0.35, P < 0.001, respectively). The decrease in the ratio was ~50% as expected based on the activity of the slow metabolizers, indicating that this plasma ratio derived from ad libitum smoking distinguishes genetically slow and normal metabolic groups.

Effect of Levels of Smoking on CYP2A6 Activity. We tested whether the plasma nicotine levels were inversely related to CYP2A6 activity (indicated by the 3-hydroxycotinine/cotinine ratio) to determine whether in vivo CYP2A6 activity was inversely related to plasma nicotine among CYP2A6*1/*1 individuals (excluding all known CYP2A6 genetic variants causing reduced activity). A significant inverse relationship between plasma nicotine and the 3-hydroxycotinine/cotinine ratio was detected (r = −0.41, P < 0.0001), suggesting that as nicotine plasma levels increase, CYP2A6 activity decreases.

Discussion
The solid-phase extraction HPLC-UV assay for the simultaneous detection of nicotine, cotinine, and 3-hydroxycotinine
concentrations in the plasma of *ad libitum* Caucasian smokers was sensitive and reproducible; the between-day variations were within acceptable limits; and the assay remained linear in excess of the necessary ranges of detection. Nicotine and cotinine levels measured by this assay were highly correlated to the nicotine and cotinine levels measured by a traditional liquid-liquid extraction HPLC-UV assay. Therefore, the solid-phase extraction HPLC-UV assay can be used to identify and quantify levels of nicotine, cotinine, as well as 3-hydroxycotinine in the plasma of smokers.

We aimed to identify biomarkers for the estimation of smoking levels in *CYP2A6*/*1/*1 individuals and to determine whether the *CYP2A6* variants limited the use of these indices. There are billions of smokers worldwide, and cigarette smoking was the cause of nearly five million premature deaths globally in the year 2000 (42). Although smoking has been clearly identified as a direct cause of multiple medical disorders, including cancers, cardiovascular, and respiratory diseases, people continue to smoke. To conduct studies of the pathologies associated with smoking, it is necessary to identify robust biomarkers of smoke exposure.

Table 1. Pearson’s correlation analysis of indices of smoking level measured by levels of CPD and CO

<table>
<thead>
<tr>
<th>Index*</th>
<th>CYP2A6*1/*1 only (n = 120)</th>
<th>Total group (n = 152)</th>
<th>Between-group comparisons</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r</td>
<td>P</td>
<td>r</td>
</tr>
<tr>
<td>CPD level</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO (ppm)</td>
<td>0.60</td>
<td><0.001</td>
<td>0.60</td>
</tr>
<tr>
<td>Nicotine (ng/mL)</td>
<td>0.46</td>
<td><0.001</td>
<td>0.46</td>
</tr>
<tr>
<td>Cotinine (ng/mL)</td>
<td>0.52</td>
<td><0.001</td>
<td>0.53</td>
</tr>
<tr>
<td>3-Hydroxycotinine (ng/mL)</td>
<td>0.47</td>
<td><0.001</td>
<td>0.47</td>
</tr>
<tr>
<td>Cotinine/nicotine</td>
<td>0.32</td>
<td><0.001</td>
<td>0.30</td>
</tr>
<tr>
<td>(3-Hydroxycotinine + cotinine)/nicotine</td>
<td>0.25</td>
<td><0.01</td>
<td>0.23</td>
</tr>
<tr>
<td>3-Hydroxycotinine/cotinine</td>
<td>0.19</td>
<td>0.05</td>
<td>0.15</td>
</tr>
<tr>
<td>3-Hydroxycotinine/(cotinine + nicotine)</td>
<td>0.15</td>
<td>NS</td>
<td>0.11</td>
</tr>
<tr>
<td>CO level</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicotine (ng/mL)</td>
<td>0.70</td>
<td><0.001</td>
<td>0.66</td>
</tr>
<tr>
<td>Cotinine (ng/mL)</td>
<td>0.73</td>
<td><0.001</td>
<td>0.74</td>
</tr>
<tr>
<td>3-Hydroxycotinine (ng/mL)</td>
<td>0.58</td>
<td><0.001</td>
<td>0.55</td>
</tr>
<tr>
<td>Cotinine/nicotine</td>
<td>0.30</td>
<td><0.001</td>
<td>0.30</td>
</tr>
<tr>
<td>(3-Hydroxycotinine + cotinine)/nicotine</td>
<td>0.17</td>
<td>0.05</td>
<td>0.17</td>
</tr>
<tr>
<td>3-Hydroxycotinine/cotinine</td>
<td>0.34</td>
<td><0.001</td>
<td>0.32</td>
</tr>
<tr>
<td>3-Hydroxycotinine/(cotinine + nicotine)</td>
<td>0.30</td>
<td><0.01</td>
<td>0.28</td>
</tr>
</tbody>
</table>

*All ratios were log transformed for these analyses.

ⁱStatistical significance of differences between correlation coefficients in the CYP2A6*1/*1 group and the total group.

^jStatistical significance of differences between correlation coefficients for CPD and CO level. Only indices that were significantly related to both CPD and CO levels were compared.

![Figure 1](image-url). Indices of smoking levels and relationship between smoking intensity (CO per cigarette) and CPD levels (*N* = 152). The numbers on the x-axes (1-7) indicate levels of smoking measured by CPD (A, B, and D) or CO (C) in ppm. The upper and lower limits of the boxes indicate the 95% confidence interval of the mean. The horizontal bars in the boxes indicate the means for each smoking level. Pearson’s correlation analysis was used to derive all *r* and *P*s.
The CYP2A6*12A variant has reduced enzymatic activity, measured as 3-hydroxycotinine/cotinine (3HC/COT) derived from ad libitum smoking. In this aligned scatter plot, each open circle represents the log 3-hydroxycotinine/cotinine ratio for an individual participant. The horizontal bars indicate the mean. Means were compared using an unpaired Student’s t test. The CYP2A6*1/*1 group had a greater mean ± SD log 3-hydroxycotinine/cotinine ratio compared with the CYP2A6*1/*12A group (−0.31 ± 0.23 versus −0.69 ± 0.13, respectively; P < 0.001).

Multiple measures were tested as possible correlates of CPD in CYP2A6*1/*1 Caucasian smokers. We found that breath CO and plasma cotinine were most strongly related to CPD level (Table 1; Fig. 1) as others have found (23-25). In addition, consistent with previous data (43, 44), we found that these relationships were not linear over the entire range of CPD but rather tended to plateau at greater levels of CPD (Fig. 1A and B), suggesting that variation in the intensity of inhalation may limit the use of breath CO and plasma cotinine to distinguish among those smoking >20 to 25 CPD. We found that CO per cigarette was inversely related to the level of CPD (Fig. 1D), and that this relationship seemed to be influenced mainly by the two extreme groups (0-5 and >30 CPD), suggesting that the heaviest smokers inhale each cigarette with less intensity compared with those smoking the least CPD. This has also been seen in the relationship between daily cigarette consumption and carboxyhemoglobin levels measured in plasma (45). Our results indicated that plasma cotinine showed the strongest correlation with CO levels. This relationship was greater than that observed with CPD level (Table 1) and remained linear throughout the range of CO levels that were examined (Fig. 1C). Thus, like other studies (23-25, 43, 46), we found that cotinine is a moderately good biomarker, which can be used to confirm self-reported CPD and a good indicator of smoke exposure (CO). In addition, when CYP2A6 genetic variants were excluded, we found no differences in correlation coefficients between smoking levels (measured by CPD or CO levels; Table 1). These findings suggest that among Caucasians, genetic variation in CYP2A6 does not limit the use of plasma cotinine to indicate cigarette consumption or exposure to tobacco toxins. It should be noted that using the current genotyping the frequency of those having any known CYP2A6 variant is low (~15%) among Caucasians. However, it is very likely that CYP2A6 genetic variation will influence indicators of smoking level, such as cotinine, among ethnic groups where the frequencies of these variants are substantially higher, such as among Japanese and Chinese populations (19, 47).

The 3-hydroxycotinine/cotinine ratio, derived from urinary measures of cotinine and 3-hydroxycotinine, has been shown previously to correlate with the amount of cigarette consumption during ad libitum smoking (48), suggesting that rates of nicotine metabolism and clearance, at least in part, affect the amount smoked (19, 20, 49). In the present study, we found a relationship between 3-hydroxycotinine/cotinine and CPD level but only among the group without CYP2A6 variants; the relationship was similar but not significant for the total group (Table 1). One notable difference between these two studies is the use of a urinary 3-hydroxycotinine/cotinine ratio in the former study (48) versus the plasma ratio used in the present study. It may be that the urinary ratio is a better measure of CYP2A6 activity and therefore more closely related to CPD, as it controls for differences in rates of glucuronidation. Recently, we have found that genetically slow metabolizers have a reduced plasma 3-hydroxycotinine/cotinine ratio and lower levels of smoking compared with those without variants (41); however, a correlation across the entire group was not attempted in this analysis. In addition to the use of a plasma metabolic ratio, another reason for the apparent discordance between the 3-hydroxycotinine/cotinine ratio and CPD may be that individuals smoke with varying intensities (50). We have shown that CYP2A6 genetically slow metabolizers reduce their smoking both through a reduction in CPD (18, 19) and also through decreased intensity, specifically by taking smaller mean puff volumes, resulting in a reduced overall puff volume (51). Thus, it is possible that differences in smoking topography may have masked the association between 3-hydroxycotinine/cotinine and CPD. This relationship would be poorer when slow metabolizers are included as they adjusted their smoking using intensity as well as CPD; this difference in intensity may account for the better relationship between the 3-hydroxycotinine/cotinine ratio and the CYP2A6*1/*1 rather than the whole group (Table 1). This explanation is supported by the substantially better (2-fold) and significant relationships seen between the 3-hydroxycotinine/cotinine (cotinine + nicotine) ratios and CO levels (Table 1), in both the CYP2A6*1/*1 group and the total group, as this measure includes differing amounts and intensities of smoking.

Our second objective was to study the effect of the CYP2A6*12A variant and investigate the relationships between CYP2A6 genotype groups and nicotine, its metabolites, and metabolite ratios. We found that the CYP2A6*12A variant resulted in reduced CYP2A6 activity towards nicotine, measured
Table 3. Pearson’s correlation analysis of CYP2A6 genotype groups with plasma drug and metabolite levels and ratios

<table>
<thead>
<tr>
<th>Index*</th>
<th>CYP2A6 genotype groups with no *12A</th>
<th>CYP2A6 genotypes groups with *12A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r</td>
<td>P</td>
</tr>
<tr>
<td>Nicotine (ng/mL)</td>
<td>-0.14</td>
<td>NS</td>
</tr>
<tr>
<td>Cotinine (ng/mL)</td>
<td>0.01</td>
<td>NS</td>
</tr>
<tr>
<td>3-Hydroxycotinine (ng/mL)</td>
<td>0.18</td>
<td>0.02</td>
</tr>
<tr>
<td>Cotinine/nicotine</td>
<td>0.16</td>
<td>0.04</td>
</tr>
<tr>
<td>(3-Hydroxycotinine + cotinine)/nicotine</td>
<td>0.26</td>
<td><0.01</td>
</tr>
<tr>
<td>3-Hydroxycotinine/cotinine</td>
<td>0.35</td>
<td><0.001</td>
</tr>
<tr>
<td>3-Hydroxycotinine/(cotinine + nicotine)</td>
<td>0.38</td>
<td><0.001</td>
</tr>
</tbody>
</table>

*All ratios were log transformed for these analyses.

†Statistical significance of differences between correlation coefficients before and after inclusion of the CYP2A6*12A variant.

by the 3-hydroxycotinine/cotinine ratio, consistent with its effect on protein levels and coumarin 7-hydroxylase activity (29).

CYP2A6 genetic variants alter rates of nicotine and cotinine metabolism and resulting plasma levels of nicotine, cotinine, and 3-hydroxycotinine (9, 12, 13); genotyping has been used in a variety of epidemiologic association studies to investigate their role in smoking behaviours and nicotine dependence (18, 19, 52). However, the relationship between CYP2A6 genotype groups and plasma measures and metabolite ratios has not been assessed. Here, we found that during ad libitum smoking, in the absence of controlling the timing of the last cigarette, both plasma 3-hydroxycotinine/cotinine and 3-hydroxycotinine/(cotinine + nicotine) metabolite ratios were associated with the predicted activity of the CYP2A6 genotype groups. In addition, these relationships were improved after taking into consideration the CYP2A6*12A variant, although not statistically significantly. Using genotype grouping of slow versus normal metabolizer as previously described (≤50% activity versus 100% activity; refs. 18, 19, 51), we found that both log 3-hydroxycotinine/cotinine and 3-hydroxycotinine/cotinine + nicotine ratios distinguished these genotype groups. Taken together, these findings suggest that as novel CYP2A6 variants are identified and characterized, which has been occurring rapidly during the past few years, the group separation will improve. The 3-hydroxycotinine/(cotinine + nicotine) ratio showed a slightly better relationship with CYP2A6 genotype groups compared with the 3-hydroxycotinine/cotinine ratio. It might have been expected that the 3-hydroxycotinine/cotinine ratio would have shown the strongest relationship with CYP2A6 genotype as plasma nicotine levels are highly influenced by the time to last cigarette, and inclusion of nicotine might have weakened the relationship. However, the slight improvement observed with 3-hydroxycotinine/(cotinine + nicotine) compared with 3-hydroxycotinine/cotinine may be attributed to the role that CYP2A6 plays in the metabolism of nicotine to cotinine. Some genetic variants may differ slightly in their effect on the two pathways, therefore accounting for both may improve the relationship.

The 3-hydroxycotinine/(cotinine + nicotine) ratios among the four genotype groups suggested that the predicted effect on function was reasonable (Table 3) and supports the use of these groupings in genetic epidemiology studies (19, 52). In contrast, the cotinine/nicotine ratio was not related to CYP2A6 genotype group when measured during ad libitum smoking (Table 3), likely due to the sensitivity of this ratio to the last exposure of nicotine as a result of its short half-life. In addition, it is possible that enzymes such as CYP2B6 may contribute to the C-oxidation of nicotine (53), whereas the metabolism of cotinine to 3-hydroxycotinine seems to be almost essentially mediated by CYP2A6 (3, 9), making the ratio of the metabolites a more specific probe for CYP2A6 activity.

Although we found reasonable relationships with genotype for both the 3-hydroxycotinine/cotinine and 3-hydroxycotinine/(cotinine + nicotine) ratios, there was a considerable amount of scatter within the genotype groups (Fig. 3), particularly among the group without known genetic variants (100% group). The very high values in this group suggest the possibility of increased function alleles, such as an alternative form of the gene duplication, or increased transcriptional variants not yet characterized. In addition to untested and unidentified genetic variants in CYP2A6 (http://www.imm.ki.se/CYPalleles/cyp2a6.htm), additional factors that may have limited the correlation include gender, CYP2A6 inducers (oral contraceptives), and inhibitors (grape fruit juice and menthol; ref. 6). However, given that the objective of this study was to observe these relationships during ad libitum smoking (relative to traditional phenotyping), we found fairly strong relationships between these metabolite ratios and CYP2A6 genotype group.

Lastly, we investigated the relationships between CYP2A6 activity (3-hydroxycotinine/(cotinine) among the CYP2A6*1/*1 group without detected CYP2A6 genetic variants and nicotine plasma levels. Previous data suggest that smoking reduces nicotine clearance, and that this may be due to nicotine rather than CO or cotinine (31-33). CYP2A6 activity showed an inverse relationship with plasma nicotine, suggesting that
increased levels of nicotine predicted reduced CYP2A6 activity. This inverse relationship tended to be stronger with nicotine than CO levels, suggesting that the reduction if CYP2A6 activity may be mainly due to levels of nicotine exposure itself rather than an alternative component of cigarette smoke. This is consistent with the observations in a primate model where we found that chronic nicotine treatment alone (no other smoke constituents) reduced CYP2A6 protein levels and activity (33).

Together, these findings confirm the use of plasma cotinine and CO as indicators of Caucasians’ smoking levels, and that this is not limited by CYP2A6 genetic variation likely due to the low frequency of these variants in Caucasians and due to the early stage of gene variant identification and characterization at the current time. The data also indicate that 3-hydroxycotinine/cotinine and 3-hydroxycotinine/(cotinine + nicotine) are moderately good indicators of CYP2A6 genotype, which is likely to increase in strength as new variants are identified. Lastly, the data support the finding that smokers have slower nicotine metabolism, and that this may be related to nicotine exposure, resulting in a reduced rate of nicotine metabolism through either regulatory mechanisms or perhaps by acting as a suicide substrate.

Acknowledgments

We thank Drs. Peyton Jacob III and Neal Benowitz (University of California, San Francisco, CA) for providing the nicotine, cotinine, 3-hydroxycotinine, 5-methylcotinine, and 5-methylcotinine for this study; Yusho Rao, Chun Xu, Bo Xu, Ewa Hoffmann, and Helina Nolte for technical support; and Jill Mwenifumbo for thoughtful discussions of the techniques.

References

Cancer Epidemiology, Biomarkers & Prevention

CYP2A6 Genotype, Phenotype, and the Use of Nicotine Metabolites as Biomarkers during Ad libitum Smoking

Updated version
Access the most recent version of this article at:
http://cebp.aacrjournals.org/content/15/10/1812

Cited articles
This article cites 50 articles, 17 of which you can access for free at:
http://cebp.aacrjournals.org/content/15/10/1812.full#ref-list-1

Citing articles
This article has been cited by 11 HighWire-hosted articles. Access the articles at:
http://cebp.aacrjournals.org/content/15/10/1812.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.