Monitoring Low Benzene Exposure: Comparative Evaluation of Urinary Biomarkers, Influence of Cigarette Smoking, and Genetic Polymorphisms

Silvia Fustinoni,1 Dario Consonni,1 Laura Campo,1 Marina Buratti,1 Antonio Colombi,1 Angela C. Pesatori,1 Matteo Bonzini,1 Pier A. Bertazzi,1 Vito Foà,2 Seymour Garte,2 Peter B. Farmer,3 Leonard S. Levy,4 Mauro Pala,5 Federico Valerio,5 Vincenzo Fontana,5 Arianna Desideri,6 and Domenico F. Merlo5

1Department of Occupational and Environmental Health, University of Milan and Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Milan, Italy; 2School of Public Health, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey; 3Cancer Biomarkers and Prevention Group, Biocentre and 4Medical Research Council, Institute for Environmental and Health, University of Leicester, Leicester, United Kingdom; and 5Environmental Epidemiology and Biostatistics, Department of Cancer Etiology and Epidemiology, National Cancer Research Institute, Genoa, Italy

Abstract

Benzene is a human carcinogen and an ubiquitous environmental pollutant. Identification of specific and sensitive biological markers is critical for the definition of exposure to low benzene level and the evaluation of the health risk posed by this exposure. This investigation compared urinary trans,trans-muconic acid (t,t-MA), S-phenylmercapturic acid, and benzene (U-benzene) as biomarkers to assess benzene exposure and evaluated the influence of smoking and the genetic polymorphisms CYP2E1 (RsaI and/or DraI) and NADPH quinone oxidoreductase-1 on these indices. Gas station attendants, urban policemen, bus drivers, and two groups of controls were studied (415 subjects). Median benzene exposure was 61, 22, and 6 μg/m³, respectively, with higher levels in workers than in controls. U-benzene, but not t,t-MA and S-phenylmercapturic acid, showed an exposure-related increase. All the biomarkers were strongly influenced by cigarette smoking, with values up to 8-fold higher in smokers compared with nonsmokers. Significant correlations of the biomarkers with each other and with urinary cotinine were found. A possible influence of genetic polymorphism of CYP2E1 (RsaI and/or DraI) on t,t-MA and U-benzene in subjects with a variant allele was found. Multiple linear regression analysis correlated the urinary markers with exposure, smoking status, and CYP2E1 (RsaI; R² up to 0.55 for U-benzene). In conclusion, in the range of investigated benzene levels (<478 μg/m³ or <0.15 ppm), smoking may be regarded as the major source of benzene intake; among the study indices, U-benzene is the marker of choice for biomonitoring low-level occupational and environmental benzene exposure. (Cancer Epidemiol Biomarkers Prev 2005;14(9):2237–44)

Introduction

Benzene, a known human carcinogen (group 1 IARC; ref. 1), is a major chemical widely used all over the world in the production of monomers for the polymer industry and in the synthesis of intermediates. In some countries, benzene is still used as a solvent (2). As a consequence of these production activities, it is found as an airborne pollutant in industrial environments. Benzene is also distributed in the general environment by vehicles due to both fuel vaporization and gas-fueled engine emissions (3). Benzene is originally present in fuel (<1% v/v in the United States and European Union) and is additionally produced by engines because of incomplete combustion of the organic components of gas. Moreover, benzene is a component of mainstream and side-stream cigarette smoke (4, 5). Due to its multiple sources, benzene occupational or environmental exposure may concern the major part of the population.

In the last decades in developed countries, airborne benzene in traditionally polluted working settings has progressively decreased as a consequence of preventive actions. On the other hand, benzene concentration in living environments, particularly in large cities, has reached levels that cause concern for public health. Consequently, benzene exposure in working and living environments is often very similar, with concentrations in the 1 to 1,000 μg/m³ range (<0.001-0.312 ppm).

For the definition of exposure to low levels of benzene as well as for the evaluation of health risks posed by this exposure, the identification of suitable, specific, and sensitive biological markers is needed. This need is further supported by recent evidence that indicates that benzene causes hematotoxicity at occupational levels below 1 ppm (6).

Inhaled benzene is readily absorbed into the blood at 40% to 70% of airborne doses by passive diffusion through alveolar capillary membranes. Major elimination occurs via the same mechanism with exhaled air. Once in the body, benzene is oxidized by cytochrome P450 enzymes (CYP2E1) to a reactive intermediate benzene oxide-oxepine. This highly reactive species is further metabolized through three different pathways. The predominant one leads to phenol via a nonenzymatic rearrangement. Phenol may be excreted in urine as sulfate or glucuronate derivatives (80-90% of the absorbed dose) or may be oxidized, via cytochrome P450, to 1,4- and 1,2-benzenediol, and this may be further oxidized to p- and o-benzoquinone. The quinones may be back-reduced to the original diols via NADPH quinone oxidoreductase-1 (NQO1). The second pathway leads to benzene 1,2-dihydrodiol via...
Monitoring Low Benzene Exposure by Urinary Biomarkers

epoxide hydrolase, which may be oxidized to \textit{trans,trans-}
muconic aldehyde and to \textit{trans,trans-}muconic acid (\textit{t,t-MA}),
which is excreted in urine (3-18\% of the adsorbed dose). The
minor pathway leads to pre-phenyl mercuric acid, after
conjugation with glutathione via glutathione S-transferase,
and finally to S-phenylmercuric acid (S-PMA), which is
excreted in urine (<1\% of the absorbed dose; reviewed in
ref. 7). Nonmetabolized benzene may be also excreted in urine
(U-benzene) after passive diffusion from blood to urine
through the kidney glomerular tuft (<0.1\% of the absorbed
dose; ref. 8).

For prevention of risk arising from exposure to benzene, an
occupational limit value of 3,200 \(\mu \text{g/m}^3 \) (1 ppm) has been
adopted by the European Union (9), whereas a threshold limit
value of 1,600 \(\mu \text{g/m}^3 \) (0.5 ppm) as maximal time-weighted
average during an 8-hour shift is recommended by the
American Conference of Governmental Industrial Hygienists
(10). As biological exposure indices, the use of \textit{t,t-MA}
and S-PMA in urine samples collected at the end of work shift are
indicated. Blood benzene is also suggested as a nonquantitative,
but specific, index. In addition to these indices, some
authors suggested U-benzene as a sensitive and specific
marker for the biological monitoring of benzene exposure
(8, 11-15). Although the cited biomarkers have proven to be
suitable for assessment of exposure to airborne benzene
concentrations close or above the occupational limit values,
their validity to discriminate lower exposures is currently
under evaluation.

The aim of this work was to compare the ability of \textit{t,t-MA},
S-PMA, and U-benzene to detect occupational and environ-
mental low benzene exposure and to determine how smoking
habits and genetic polymorphism of metabolic enzymes (i.e.,
CYP2E1 and NQO1) may influence such indices. With this aim,
gas station attendants, urban policemen, bus drivers, and
controls working in two large Italian cities, Milan and Genoa,
and the suburban areas surrounding them were investigated.

Materials and Methods

Study Population. The study was carried out from October
1999 to June 2000 on subjects exposed to benzene as a pollutant
of the general and/or occupational environment of urban areas
within or near two large cities in northern Italy, Milan, and
Genoa. In the Milan area, the investigated subjects were
recruited among gas station attendants (\(n = 78 \)), urban traffic
policemen (\(n = 77 \)), and subjects working in offices and
hospital facilities located downtown, designated as Milan
referents (\(n = 58 \)). In the Genoa area, subjects were recruited
among municipal bus drivers (\(n = 153 \)) and subjects working
as clerks and researchers at the National Institute for Cancer
Research in the urban environment and designated as Genoa
referents (\(n = 49 \)). Referent (nonexposed) subjects were
matched by gender, age, and smoking habits. Workers
received information about the aim of the research, and
written informed consent was obtained. Detailed information
about smoking habits, lifestyle, medical history, and occupa-
tional activity of the investigated subjects was obtained by a
self-administered questionnaire.

Personal Benzene Exposure

Airborne Benzene. Airborne benzene was collected by a
passive sampler (stainless steel tube, 9 mm internal diameter \(\times \) 90 mm length) containing Chromosorb 106 and equipped
with a diffusion chamber that was worn by the investigated
subjects near the breathing zone during part of the work shift
(typically from 8:00 a.m. to 2:00 p.m.; ref. 16). At the end of the
monitored period, the passive sampler was closed with a
brass cap and nut, equipped with a polyperfluoroethylene
ferule, and kept at \(-20^\circ\text{C}\) until analysis. Benzene in samplers
was determined by thermal desorption followed by gas
chromatography/flame ionization detector analysis. The limit of
detection for airborne benzene was 6 \(\mu \text{g/m}^3 \) (0.002 ppm).

Biological Monitoring

Specimen Collection. Urine spot samples were collected twice
for each subject, once at the beginning and the other at the end
of the monitored period. Specimens were partitioned in
plastic tubes for cotinine (pre-monitoring sample, \(T_0 \)), \textit{t,t-MA}
(pre-monitoring and post-monitoring samples, \(T_0 \) and \(T_1 \)),
and S-PMA [post-monitoring sample, \(T_1 \); 6 mol/L HCl/1 mL
urine (12.5 \(\mu \text{L} \)) was added as a preserving agent]. For U-
benzene, a 7-mL aliquot was poured into a precleaned 8-mL
glass vial, promptly closed with a rubber lid with a polyper-
fluoroethylene lining, and crimped with an aluminum seal
(pre-monitoring and post-monitoring samples, \(T_0 \) and \(T_1 \),
collected only for the Milan subjects). All samples were
coded, frozen at \(-20^\circ\text{C}\), and delivered to the various
laboratories, where analyses were done without knowledge of
their origin.

Urine \textit{t,t-MA}. Determination of urinary \textit{t,t-MA} was carried
out by pre-purification of urine with solid-phase extraction
using a strong anion exchange column (300 mg, Supelco,
Milan, Italy) followed by high-performance liquid chromatog-
raphy and UV detection according to a published procedure
(17). The detection limit of the procedure was 10 \(\mu \text{g/L} \).

Urine S-PMA. Determination of urinary S-PMA was based
on an immunoassay technique according to a previously
published procedure (18). The immunoassay plate-based kit
and reagents were from AB Biomonitoring Ltd. (Cardiff,
Wales, United Kingdom). The detection limit of the procedure
was 0.2 \(\mu \text{g/L} \).

U-benzene. Determination of U-benzene was done by
headspace solid-phase microextraction followed by gas chro-
matography/mass spectrometry analysis according to a
published method (19) with some modifications. Briefly, 0.5
mL urine was poured in a 2-mL autosampler vial containing
300 mg NaCl. The internal standard solution of benzene-d\(_0\)
(1 \(\mu \text{L} \) in methanol (0.475 \(\mu \text{g/L} \)) was added, and the vial was
immediately closed with a screw-holed cap equipped with a
silicone-polyperfluoroethylene gasket. Benzene was sampled
from the urine headspace by the solid-phase microextraction
technique using a PDMS fiber. Sampling was operated at room
temperature with a Varian CX8200 autosampler. Analyte
separation was done by gas chromatography using a BD1
column (60 m length, 0.25 mm internal diameter, 1 \(\mu \text{m} \) film
thickness). Quantification was done using a mass spectrometry
detector operating in the electron impact mode. The detection
limit of the procedure was 15 ng/L.

U-cotinine. Determination of urinary cotinine was carried
out by high-performance liquid chromatography and UV
detection according to a published procedure (20). The
detection limit of the procedure was 50 ng/L.

Genetic Polymorphisms. For analysis of CYP2E1, samples
were amplified using the following primers: 5' -CCAGTC-
GAGTCTACATTTGCA and 3' -TTCATCCTGTCTTCTAA-
CTGG. PCR was done for 35 cycles with denaturing at 95 \(^\circ\text{C} \) for 1 minute, annealing at 55 \(^\circ\text{C} \) for 1 minute, and extension at
72 \(^\circ\text{C} \) for 1 minute. PCR products are digested with excess
RsaI or DraI restriction enzyme. For analysis of the NQO1 RFLP,
DNA samples were amplified in a total reaction volume of 50 \(\mu \text{L} \)
containing 1.2 mmol/L deoxynucleotide triphosphate, 1.2 mmol/L oligo-
nucleotide primers, and 2.5 units Taq polymerase (Amplitaq,
Perkin-Elmer, Boston, MA) using the following primers: 5'-
GAGACCTAGCTGCTGAATCGT and 5'-ATTGAAATCCGG-
GGCTGTTGCG. PCR was done for 35 cycles with denaturing at

Cancer Epidemiol Biomarkers Prev 2005;14(9). September 2005
Downloaded from cebp.aacrjournals.org on August 14, 2017. © 2005 American Association for Cancer Research.
93°C for 1 minute, annealing at 65°C for 1 minute, and extension at 72°C for 1 minute. PCR products were digested with excess \(HinfI \) for 3 hours and then electrophoresed through 1.8% agarose and visualized by ethidium bromide staining.

Statistical Analyses. We assessed the relationship of benzene exposure and the urinary biomarkers by making comparisons among the occupational groups and between pre-shift and post-shift samples and by using correlation/regression techniques. A value corresponding to one-half of the detection limit was assigned to measurements below analytic detection limit was assigned to measurements below analytic detection limit. Because variables were highly positively skewed, we conducted parallel analyses with parametric methods on log10-transformed variables. A value corresponding to one-half of the detection limit was assigned to measurements below analytic detection limit. Because variables were highly positively skewed, we conducted parallel analyses with parametric methods on log10-transformed variables.

Results

Study Population. Selected characteristics of study subjects are reported in Table 1. Comparing Genoa and Milan subjects, we noticed that the former were almost entirely males, whereas the latter had a higher prevalence of females (overall, ~30%), mainly distributed in referents and traffic policemen. Self-reported smoking prevalence was similar across job titles and cities, with an overall 35% of cigarette smokers and a mean daily consumption of 16 cigarettes. The good correlation coefficient found between self-reported daily cigarette consumption and the level of urinary cotinine (\(r = 0.291 \)) proves the reliability of smoking level collected through the two-way interactions between airborne benzene, U-cotinine, and CYP2E1 (RsaI) polymorphism by introducing product terms in the model; because none of these terms was statistically significant, they were omitted from the final model which had the following form: log(U-Biomarker) = constant + log(BenzeneAir) \times \beta_1 + log(U-cotinine) \times \beta_2 + CYP2E1 (RsaI) \times \beta_3. A two-sided \(P \) of 0.05 was considered significant. The statistical analyses were carried out using SPSS 12.0 for Windows.

Personal Benzene Exposure and Biological Monitoring. In Table 2, data on personal exposure to airborne benzene, as time-weighted average value, excretion of \(t_{1/2} \)-MA (\(T_0 \) and \(T_1 \)), S-PMA, and U-benzene (\(T_0 \) and \(T_1 \)), in subjects divided according to city, job title, and smoking habits are reported. Using parametric statistics, higher personal exposures were found in gas station attendants, followed by traffic policemen and bus drivers, with comparable levels, and finally by the two

Table 1. Selected characteristics of investigated subjects divided according to city and job title

<table>
<thead>
<tr>
<th>Location</th>
<th>Jobs</th>
<th>No. subjects</th>
<th>No. males</th>
<th>No. females</th>
<th>Age (mean ± SD)</th>
<th>% Smokers</th>
<th>No. cigarettes daily (mean ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genoa</td>
<td>Referents</td>
<td>49</td>
<td>47</td>
<td>2</td>
<td>41.5 ± 6.5</td>
<td>27</td>
<td>15.6 ± 6.9</td>
</tr>
<tr>
<td></td>
<td>Bus drivers</td>
<td>153</td>
<td>150</td>
<td>3</td>
<td>38.9 ± 7.9</td>
<td>31</td>
<td>17.0 ± 9.3</td>
</tr>
<tr>
<td>Milan</td>
<td>Referents</td>
<td>58</td>
<td>39</td>
<td>19</td>
<td>38.6 ± 10.7</td>
<td>41</td>
<td>14.7 ± 9.8</td>
</tr>
<tr>
<td></td>
<td>Traffic policemen</td>
<td>77</td>
<td>47</td>
<td>30</td>
<td>31.7 ± 5.5</td>
<td>36</td>
<td>17.0 ± 7.6</td>
</tr>
<tr>
<td></td>
<td>Gas station attendants</td>
<td>78</td>
<td>69</td>
<td>9</td>
<td>42.3 ± 12.7</td>
<td>41</td>
<td>17.0 ± 7.6</td>
</tr>
<tr>
<td>Both cities</td>
<td>All jobs</td>
<td>415</td>
<td>352</td>
<td>63</td>
<td>38.5 ± 9.6</td>
<td>35</td>
<td>16.0 ± 8.4</td>
</tr>
</tbody>
</table>

Table 2. Summary of biological markers of benzene exposure in the investigated subjects divided according to city, job titles, and smoking habits

<table>
<thead>
<tr>
<th>Location</th>
<th>Jobs</th>
<th>t1/2-MA (T_0) ((\mu)g/L), median (min-max)</th>
<th>t1/2-MA (T_1) ((\mu)g/L), median (min-max)</th>
<th>S-PMA (T_1) (ng/L), median (min-max)</th>
<th>U-benzene (T_0) (ng/L), median (min-max)</th>
<th>U-benzene (T_1) (ng/L), median (min-max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genoa</td>
<td>Referents</td>
<td>Nonsmokers 72 (10-398) 3/34</td>
<td>Smokers 190 (519-1,850) 0/13</td>
<td>Smokers 195 (10-444) 1/13</td>
<td>9.0 (0.2-182.2) 0/13</td>
<td>Not determined</td>
</tr>
<tr>
<td></td>
<td>Bus drivers</td>
<td>Nonsmokers 85 (10-2,014) 16/106</td>
<td>Smokers 136 (10-600) 4/47</td>
<td>Smokers 174 (10-695) 1/47</td>
<td>5.6 (0.2-13.3) 0/6</td>
<td>Not determined</td>
</tr>
<tr>
<td>Milan</td>
<td>Referents</td>
<td>Nonsmokers 35 (10-576) 9/34</td>
<td>Smokers 51 (10-246) 4/23</td>
<td>Smokers 71 (10-270) 7/34</td>
<td>4.1 (0.2-12.5) 0/34</td>
<td>Not determined</td>
</tr>
<tr>
<td></td>
<td>Traffic policemen</td>
<td>Nonsmokers 86 (10-1,400) 8/49</td>
<td>Smokers 222 (10-1,400) 0/28</td>
<td>82 (10-416) 10/49</td>
<td>5.3 (0.2-13.8) 0/49</td>
<td>256 (98-846) 0/47</td>
</tr>
<tr>
<td></td>
<td>Gas station attendants</td>
<td>Nonsmokers 35 (10-672) 5/46</td>
<td>Smokers 61 (11-478) 6/46</td>
<td>49 (10-581) 5/46</td>
<td>5.8 (0.2-10.9) 0/38</td>
<td>459 (147-2,708) 0/44</td>
</tr>
</tbody>
</table>

*Observations below the detection limit versus total observation.

1 Gas station attendants higher than bus drivers and traffic policemen, higher than controls (\(P < 0.01 \)).

2 Smokers higher than nonsmokers for all the biomarkers (\(P < 0.001 \)); statistical analysis was done with \(t \) test for independent samples on log10-transformed variables.
referred groups. A similar trend was observed in the excretion of U-benzene in Milan (both T₀ and T₁) but not of t,t-MA and S-PMA. The comparison between pre-monitoring and post-monitoring samples resulted in no difference in t,t-MA and unexpectedly higher levels of U-benzene in T₀ than in T₁ specimens. No differences in airborne benzene exposure between smokers and nonsmokers were found within the same job title. On the contrary, following cigarette consumption, the levels of the urinary biomarkers (t,t-MA, S-PMA, and U-benzene) were systematically higher (up to ~8-fold). The application of nonparametric statistics confirms these results with the exception of t,t-MA in Milan referents, which did not differ in smokers compared with nonsmokers, in both T₀ and T₁ samples. Figure 1 shows box plots of post-monitoring t,t-MA, S-PMA, and U-benzene in Milan subjects divided according to smoking and job titles.

Table 3 reports Pearson’s correlations coefficient between environmental and biological markers in all the investigated subjects and in subjects divided according to smoking habits. Significant correlations were found between both U-benzene T₀ and T₁ but not with t,t-MA, S-PMA, and personal exposure, with the highest rs in nonsmokers and the lowest in smokers (for U-benzene T₀; r = 0.56 versus 0.30). Benzene exposure biomarkers were mostly correlated to each other, with the highest Pearson’s r for t,t-MA or U-benzene in pre-monitoring versus post-monitoring urine samples. Good correlations with U-cotinine were found in all subjects and in smokers; as expected, such correlations were not found in nonsmokers. Spearman’s correlation analysis between environmental and biological markers fully confirms these results.

Genetic Polymorphisms. The observed genotypes agree with allele frequencies reported previously for other European populations (21). No differences in the frequencies of genotypes among the groups with different job titles were found (χ^2 test was used for comparison). Based on this observation, the total study group (n = 415) was used for analyses of the effects of polymorphic genotypes on exposure biomarkers. The results of t test comparison, reported in Table 4, showed higher median levels of t,t-MA T_0 but not of t,t-MA T_1, in subjects with at least one variant allele in CYP2E1 (RsaI) or CYP2E1 (DraI). Furthermore, a lower median level of U-benzene T_1 in subjects with one variant allele in CYP2E1 (RsaI) was found. A similar, but not significant, difference was found for U-benzene T_0. No influence of genetic polymorphism of NQO1 or of the combination of CYP2E1 (RsaI) and CYP2E1 (DraI) polymorphisms on urinary biomarkers was observed. When the Kruskal-Wallis test was applied to untransformed data for group comparison, slight differences with the previous analysis were noticed. In particular, higher median levels of t,t-MA T_0 but not of t,t-MA T_1, in subjects with at least one variant allele in CYP2E1 (DraI; P = 0.03) but not in CYP2E1 (RsaI; P = 0.07) was observed. Furthermore, a lower median level of both U-benzene T_0 and U-benzene T_1 in subjects with one variant allele in CYP2E1 (RsaI; P < 0.01 and 0.03) was found.

Multiple Linear Regression Analysis. The adjusted multiple regression analyses (Table 5) substantially confirmed the findings of univariate analyses. We observed significant relationships between each of the urinary biomarkers and smoking (measured as U-cotinine); instead, after adjustment for smoking and CYP2E1 (RsaI) polymorphism, only U-benzene was significantly positively related to airborne benzene; this variable alone explained ~ 20% of the variability in U-benzene. Accordingly, the adjusted R^2 for the models containing U-benzene as the dependent variable were 0.55 and 0.41 for pre-shift and post-shift measurements, respectively, much higher than those obtained when the other biomarkers were analyzed (0.10-0.20). We found a significant increase of t,t-MA...
in pre-shift urine samples (but not in post-shift samples) for subjects carrying a mutant CYP2E1 (RsaI) allele; these subjects also had a significant reduction in the excretion of U-benzene, both pre-shift and post-shift.

Discussion

In the last decade, several studies were carried out to evaluate personal exposure to benzene in different categories of workers exposed to petrol engine exhaust fumes and/or to gasoline vapors (22–35). In the present investigation, gas station attendants, traffic policemen, bus drivers, and the general population working within or near two large cities of northern Italy, Genoa, and Milan were investigated through environmental and biological monitoring.

Comparing personal exposure to benzene in the different job titles, we observed that gas station attendants showed the highest level (median, 61 μg/m³ or 0.019 ppm) followed by traffic policemen (21 μg/m³ or 0.007 ppm), with comparable exposure, and finally by the two groups of referents (9 and 6 μg/m³ or 0.003 and 0.002 ppm) with the lowest concentrations (Table 2). This exposure rank is in line with what was expected based on previous experience, although the concentrations measured in exposure rank is in line with what was expected based on the economic incentive for purchasing new cars equipped with catalytic converters, and (c) the aspiration system applied to the nozzle of the gasoline pump for vapor recovery (36, 37).

Considering the workers with the highest exposure levels (i.e., gas station attendants), median and maximum benzene levels of 61 and 478 μg/m³ (0.019 and 0.15 ppm) are, respectively, 52- and 7-fold lower than the European Union occupational limit value of 3,200 μg/m³ (1 ppm; ref. 9) recently adopted in Italy but also lower than the limit value recommended or stated by industrial hygiene associations or governmental authorities (10). On the contrary, exposure to benzene in referents, with median and maximum levels up to 9 and 115 μg/m³ (0.003 and 0.036 ppm), is about equal to and up to 12-fold higher than the European Union air quality standard of 10 μg/m³ (0.003 ppm; ref. 38).

Considering urinary t,t-MA as a biomarker of occupational exposure to benzene, we found that in the different job titles there were no differences related to personal exposure or correlation with airborne benzene (Tables 2 and 3). This finding is consistent with previous studies, as reviewed by Scherer et al. (39) and Dor et al. (40). Moreover, recent publications on traffic policemen, gas station attendants, and

Table 3. Pearson’s correlations between environmental and biological markers and between biomarkers themselves in all investigated subjects, nonsmokers, and smokers

<table>
<thead>
<tr>
<th></th>
<th>t,t-MA T₀</th>
<th>t,t-MA T₁</th>
<th>S-MA</th>
<th>U-benzene T₀</th>
<th>U-benzene T₁</th>
<th>U-cotinine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air benzene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All subjects</td>
<td>0.05 (411)</td>
<td>0.10³ (412)</td>
<td>0.04 (370)</td>
<td>0.41¹ (204)</td>
<td>0.38¹ (210)</td>
<td>0.05 (412)</td>
</tr>
<tr>
<td>Nonsmokers</td>
<td>0.00 (268)</td>
<td>0.09 (269)</td>
<td>0.04 (242)</td>
<td>0.56¹ (125)</td>
<td>0.53¹ (128)</td>
<td>0.04 (269)</td>
</tr>
<tr>
<td>Smokers</td>
<td>0.09 (143)</td>
<td>0.06 (143)</td>
<td>-0.03 (128)</td>
<td>0.30³ (79)</td>
<td>0.23³ (82)</td>
<td>-0.07 (143)</td>
</tr>
<tr>
<td>t,t-MA T₀</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All subjects</td>
<td>0.55³ (412)</td>
<td>0.27³ (369)</td>
<td>0.24³ (241)</td>
<td>0.10 (125)</td>
<td>0.03 (128)</td>
<td>-0.12 (269)</td>
</tr>
<tr>
<td>Nonsmokers</td>
<td>0.47³ (269)</td>
<td>0.24³ (241)</td>
<td>0.17³ (128)</td>
<td>0.32³ (78)</td>
<td>0.13 (82)</td>
<td>0.48¹ (143)</td>
</tr>
<tr>
<td>Smokers</td>
<td>0.60³ (143)</td>
<td>0.17³ (128)</td>
<td>0.34³ (242)</td>
<td>0.08 (125)</td>
<td>0.04 (128)</td>
<td>0.02 (270)</td>
</tr>
<tr>
<td>t,t-MA T₁</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All subjects</td>
<td>0.43³ (370)</td>
<td>0.35³ (203)</td>
<td>0.27³ (210)</td>
<td>0.44³ (143)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonsmokers</td>
<td>0.47³ (128)</td>
<td>0.40³ (78)</td>
<td>0.28³ (82)</td>
<td>0.60³ (143)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smokers</td>
<td>0.30³ (72)</td>
<td>0.54³ (77)</td>
<td>0.38³ (128)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-PMA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All subjects</td>
<td>0.39³ (189)</td>
<td>0.40³ (197)</td>
<td>0.33³ (370)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonsmokers</td>
<td>0.25³ (117)</td>
<td>0.17³ (120)</td>
<td>0.13³ (242)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smokers</td>
<td>0.30³ (72)</td>
<td>0.54³ (77)</td>
<td>0.38³ (128)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U-benzene T₀</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All subjects</td>
<td>0.71³ (201)</td>
<td>0.64³ (203)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonsmokers</td>
<td>0.62¹ (124)</td>
<td>0.00 (125)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smokers</td>
<td>0.54³ (77)</td>
<td>0.47³ (78)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U-benzene T₁</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All subjects</td>
<td>0.53³ (210)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonsmokers</td>
<td>0.07 (128)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smokers</td>
<td>0.33³ (82)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*P < 0.05
*P < 0.01; the number of pairs in parentheses; statistical analysis was done on log 10-transformed variables.

Table 4. Biomarkers of exposure in all investigated subjects divided according to different polymorphic genotypes

<table>
<thead>
<tr>
<th>Polymorphic genotype/genotype subgroups</th>
<th>t,t-MA T₀ μg/L, median (min-max), n</th>
<th>t,t-MA T₁ μg/L, median (min-max), n</th>
<th>S-MA T₁ (μg/L), median (min-max), n</th>
<th>U-benzene T₀ (ng/L), median (min-max), n</th>
<th>U-benzene T₁ (ng/L), median (min-max), n</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYP2E1 (RsaI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wild-type</td>
<td>76 (<10-1,850), 382</td>
<td>79 (<10-1,089), 382</td>
<td>6.7 (0.2-182.2), 340</td>
<td>438 (77-6,430), 189</td>
<td>283 (15-5,111), 194</td>
</tr>
<tr>
<td>ht variant</td>
<td>118 (<10-2,014), 27</td>
<td>56 (<10-2,86), 28</td>
<td>5.6 (0.2-16.0), 28</td>
<td>264 (72-2,635), 13</td>
<td>149 (54-1,170), 14</td>
</tr>
<tr>
<td>P*</td>
<td>0.05</td>
<td>0.14</td>
<td>0.23</td>
<td>0.09</td>
<td>0.03</td>
</tr>
<tr>
<td>CYP2E1 (DraI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wild-type</td>
<td>74 (<10-1,850), 349</td>
<td>77 (<10-1,089), 349</td>
<td>6.6 (0.2-182.2), 308</td>
<td>450 (77-6,430), 173</td>
<td>273 (25-5,111), 177</td>
</tr>
<tr>
<td>ht + ho variant</td>
<td>115 (<10-2,014), 60</td>
<td>88 (<10-4,52), 61</td>
<td>6.7 (0.2-18.5), 60</td>
<td>347 (72-2,635), 29</td>
<td>251 (15-3,296), 31</td>
</tr>
<tr>
<td>P*</td>
<td>0.02</td>
<td>0.69</td>
<td>0.57</td>
<td>0.63</td>
<td>0.46</td>
</tr>
<tr>
<td>NQO1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wild-type</td>
<td>87 (<10-2,014), 238</td>
<td>84 (<10-1,089), 239</td>
<td>6.6 (0.2-182.2), 212</td>
<td>421 (72-6,430), 115</td>
<td>248 (25-4,246), 121</td>
</tr>
<tr>
<td>ht + ho variant</td>
<td>67 (<10-672), 171</td>
<td>72 (<10-909), 171</td>
<td>6.5 (0.2-65.9), 156</td>
<td>466 (81-5,106), 87</td>
<td>283 (15-5,111), 87</td>
</tr>
<tr>
<td>P*</td>
<td>0.40</td>
<td>0.40</td>
<td>0.78</td>
<td>0.69</td>
<td>0.96</td>
</tr>
</tbody>
</table>

*NOTE: Comparison between genotype subgroups was done by t test for independent samples.
*P for comparison with t test for independent samples on log 10-transformed variables between the genotype subgroups.
Table 5. Evaluation of airborne benzene exposure, smoking status (as urinary cotinine), and CYP2E1 (Rsa1) genotype on urinary biomarkers according to linear multiple regression analysis: log$_10$(U-Biomarker) = constant + log$_10$(BenzeneAir) $\times R_s$ + log$_10$(U-cotinine) $\times R_c$ + CYP2E1 (Rsa1) $\times R_p$

<table>
<thead>
<tr>
<th></th>
<th>U-benzene T_0</th>
<th>U-benzene T_1</th>
<th>S-PMA</th>
<th>U-benzene T_0</th>
<th>U-benzene T_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>β (SE)</td>
<td>R^2_p, P</td>
<td>R^2_p, P</td>
<td>R^2_p, P</td>
<td>R^2_p, P</td>
<td>R^2_p, P</td>
</tr>
<tr>
<td>Constant</td>
<td>1.27 (0.11)</td>
<td><-0.01</td>
<td>1.07 (0.10)</td>
<td><-0.01</td>
<td>0.28 (0.09)</td>
</tr>
<tr>
<td>Benzene Air</td>
<td>0.05 (0.06)</td>
<td>$0.01, 0.43$</td>
<td>0.09 (0.05)</td>
<td>$0.01, 0.09$</td>
<td>0.01 (0.05)</td>
</tr>
<tr>
<td>U-cotinine</td>
<td>0.24 (0.04)</td>
<td>$0.01, 0.19$</td>
<td>0.32 (0.03)</td>
<td>$0.01, 0.19$</td>
<td>0.21 (0.03)</td>
</tr>
<tr>
<td>CYP2E1 (Rsa1)</td>
<td>0.29 (0.11)</td>
<td>$0.02, 0.01$</td>
<td>$<-0.07, 0.10$</td>
<td>$<-0.01, 0.47$</td>
<td>$<-0.07, 0.09$</td>
</tr>
<tr>
<td>Whole model</td>
<td>0.10, <-0.01</td>
<td>0.20, <-0.01</td>
<td>0.10, <-0.01</td>
<td>0.20, <-0.01</td>
<td>0.10, <-0.01</td>
</tr>
<tr>
<td>R^2_{adj}, P</td>
<td>R^2_{adj}, P</td>
<td>R^2_{adj}, P</td>
<td>R^2_{adj}, P</td>
<td>R^2_{adj}, P</td>
<td>R^2_{adj}, P</td>
</tr>
</tbody>
</table>

NOTE: Values of constant and β coefficient, with SE, partial $R^2 (R^2_p)$, and significance (P) for each term of the equation, are given. Adjusted $R^2 (R^2_{adj})$ and the significance (P) for the whole model are reported in the last row. Statistical analysis was done on log$_10$-transformed variables.

bus drivers confirmed the lack of differences between workers and the general population in t,t-MA excretion (13, 28, 30). Indeed, a benzene threshold, ranging from 800 to 3,200 μg/m3 (0.25-1 ppm), below which t,t-MA may not be a useful biomarker for exposure to benzene, was suggested (11, 41, 42). In the present study, both the median and the highest benzene exposure were well below these values.

In addition to smoking and genetic polymorphisms (discussed later), the preserving agent sorbic acid and its salts (sorbates), contained in a large variety of food and drinks, may have contributed to the observed level of t,t-MA (43-45). According to Ruppert et al. (43), as much as 50% of t,t-MA excreted in nonsmoking subjects and up to 25% in smoking, nonoccupationally exposed subjects may be ascribed to the contribution of these molecules. Because we did not collect information on food and drink intake in the study subjects, the contribution of sorbic acid and its salts in the excretion of t,t-MA could not be properly evaluated.

S-PMA is generally considered a very specific biomarker of benzene, successfully applied to distinguish exposed and nonexposed subjects (35, 41, 42, 46-49) and correlated with personal exposure starting from low concentrations [reviewed by Dor et al. (40)]. In the present study, S-PMA was also a poor biomarker of occupational exposure to benzene. This is consistent with a recent field study on traffic policemen in which S-PMA failed to distinguish exposed from unexposed subjects (28). Overall, available evidence does not allow setting an unequivocal threshold above which this index may be applied: benzene concentrations ranging from 64 to 960 μg/m3 (0.02-0.3 ppm) were suggested (25, 35, 49). Again, the majority of our subjects were compared, no difference was found for t,t-MA, whereas a significant decrease in the levels of U-benzene was detected in 12 gas station attendants (median benzene exposure, 300 μg/m3 or 0.094 ppm), but U-benzene could not discriminate between workers and controls (13). A correlation was also found among petrochemical workers exposed to 90 μg/m3 (0.028 ppm) of benzene (50). U-benzene failed to differentiate two groups of volunteers, one cycling in urban and the other in rural routes (51), and showed no correlation with personal exposure in parking attendants and laboratory workers (median exposure, 14 μg/m3 or 0.004 ppm; ref. 30).

The results of the present investigation further support the use of U-benzene as a biomarker of exposure to benzene even at low levels: based on our data, U-benzene is useful starting from airborne concentrations as low as 6 μg/m3 (0.002 ppm). When levels of urinary biomarkers in T_0 and T_1 specimens were compared, no difference was found for t,t-MA, whereas a significant decrease in the levels of U-benzene at the end of the monitoring period was observed in all job tasks in both smokers and nonsmokers. This behavior of U-benzene is in contrast with the increase expected following occupational exposure. The drop in excretion is especially evident in smokers; a possible reason for this may be related to refraining from smoking during the work shift. Another explanation may be linked to the circadian rhythms in the biochemical activity of organs and tissues with a nocturnal slow down in the production of urine and metabolites (52). Due to the reduced transformation, at night, an increase in the concentration of circulating benzene released from storage tissues by passive diffusion is expected. Consequently, in morning samples, the concentration of U-benzene should reflect the amount present in blood. Later, the resumption of kidney and liver activities quickly subtracts benzene from circulation with a following decrease in its level. As, according to our knowledge, no evidence on daily rhythmic variation in benzene excretion in humans has been reported to date, this issue remains open and will be the object of further investigation.

Mainstream cigarette smoke contains relevant amounts of benzene and can lead to an average extra benzene inhalation of ~720 μg/d (16 cigarettes daily × 45 μg/cigarette; ref. 5) in smoking compared with nonsmoking subjects. Daily benzene exposure from inhalation of polluted air in working and living environments was calculated assuming that subjects were exposed for 8 hours daily to the benzene level measured during the investigated work shift and for the remaining 16 hours daily to the level measured in the referent subjects [work shift exposure μg/m3 (median value for the specific job title) × 0.9 m3/h (ventilation rate) × 8 hours (work shift duration) + 9 μg/m3 (median exposure for highest exposed refers) × 0.9 m3/h (ventilation × 16 hours daily, rest of the day)]. The estimated average intakes were 194, 288, and 526 μg/d for controls, bus drivers or traffic policemen, and gas station attendants. The ratio between daily intake computed in smokers (environmental benzene + smoke) and nonsmokers...
(only environmental benzene) was estimated to be 4.7 in controls, 3.5 in bus drivers or traffic policemen, and 2.4 in gas station attendants. These values are in good agreement with the ratio obtained in this study between urinary biomarkers detected in smokers and nonsmokers (1.5-3.8 for \(t,t\)-MA, 1.5-2.0 for S-PMA, and 2.5-8.0 for U-benzene; Table 2) as well as those reported in previous investigations (42, 43, 45, 51). Based on these calculations, we would predict a daily benzene intake higher in smoking referents (194 µg/d from inhalation of polluted air + 720 µg/d from cigarettes = 914 µg/d) than in nonsmoking gas station attendants (526 µg/d). This estimate is consistent with the levels of U-benzene measured in smoking referents (560 and 351 ng/L in \(T_0 \) and \(T_1 \) samples) compared with nonsmoking gas station attendants (459 and 342 ng/L in \(T_0 \) and \(T_1 \) samples). U-cotinine significantly correlated with \(t,t\)-MA, S-PMA, and U-benzene in all subjects and in smokers. The correlations with personal exposure were significant only for U-benzene, not for \(t,t\)-MA and S-PMA. From the linear regression of U-benzene \(T_1 \) versus air benzene (all subjects), it was calculated that an exposure of 320 µg/m³ (0.1 ppm) corresponds to a U-benzene excretion of 828 ng/L. This value agrees with those reported previously (13, 14). The correlation between biomarkers were generally higher in smokers compared with nonsmokers. These observations further support the relevance of additional benzene exposure due to cigarette smoking.

Rothman et al. have reported evidence of a genetic basis for human susceptibility to benzene-related disease (53). They found a higher probability of “benzene poisoning” (hematotoxicity) in heavily exposed Chinese workers having a rapid fractional excretion of chlorozoxazone (phenotype of CYP2E1) and two copies of the NQO1 609C>T mutation. Some evidences of the influence of genetic polymorphism in the production of benzene metabolites were also reported (23, 51, 54, 55). The result of our study suggests, for the first time, a role of the genetic polymorphisms of CYP2E1 RsaI and DraI in the metabolism of benzene (Table 4). The study population is large enough to allow for the detection of a small effect in a limited number of individuals as expected based on the mutation frequencies. These two polymorphisms in CYP2E1 have not been found to have a significant effect on benzene toxicity (53, 54) or CYP2E1 phenotype (56), although other studies have indicated a role for CYP2E1 genotype in benzene toxicity, gene expression, and disease risk (57-59). Our result on mutation frequencies. These two polymorphisms in CYP2E1 in the metabolism of benzene (Table 4). The study population and two copies of the NQO1 609C>T were significantly modified, U-benzene \(T_1 \) showed a trend toward decrease, whereas \(t,t\)-MA \(T_1 \) was not influenced by the polymorphisms of CYP2E1.

Multiple linear regression analysis (Table 5) summarizes how the influence of genetic polymorphism on the variability of the investigated biomarkers seems to be limited in comparison with other factors: in fact, for U-benzene \(T_{op} \), only 2% could be explained by genetic polymorphism of CYP2E1, whereas as much as 22% could be explained by personal exposure and 45% by smoking.

In conclusion, at the environmental levels of benzene exposure investigated, smoking plays a major role in individual benzene uptake. The comparison of \(t,t\)-MA, S-PMA, and U-benzene as biomarkers of benzene exposure shows that U-benzene is performing best and may be applied for biological monitoring purposes starting from airborne benzene levels as low as a 6 µg/m³ (0.002 ppm).

Acknowledgments

We thank the subjects who volunteered in the study and CONCAWE, the Oil Companies’ European Organization for Environment, Health, and Safety, for their support.

References

Cancer Epidemiol Biomarkers Prev 2005;14(9). September 2005

Downloaded from cebp.aacrjournals.org on August 14, 2017. © 2005 American Association for Cancer Research.
Monitoring Low Benzene Exposure by Urinary Biomarkers

Monitoring Low Benzene Exposure: Comparative Evaluation of Urinary Biomarkers, Influence of Cigarette Smoking, and Genetic Polymorphisms
Silvia Fustinoni, Dario Consonni, Laura Campo, et al.

Updated version
Access the most recent version of this article at:
http://cebp.aacrjournals.org/content/14/9/2237

Cited articles
This article cites 49 articles, 8 of which you can access for free at:
http://cebp.aacrjournals.org/content/14/9/2237.full#ref-list-1

Citing articles
This article has been cited by 5 HighWire-hosted articles. Access the articles at:
http://cebp.aacrjournals.org/content/14/9/2237.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.