Role of Cytokine Polymorphisms in the Risk of Distal Gastric Cancer Development

Guillermo I. Perez Perez,1 Elvira Garza-Gonzalez,4 Cynthia Portal,2 and Asalia Z. Olivares3

Departments of 1Medicine and Microbiology, 2Microbiology, and 3Medicine, New York University School of Medicine and 4Departamento de Microbiologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Nuevo de Leon, Mexico

Abstract

We review the current information concerning the role of cytokine polymorphisms and the risk of develop distal gastric cancer in different populations. We have included populations colonized with Helicobacter pylori as well as populations without colonization. We found that the study of polymorphisms alone seems insufficient to assess gastric cancer risk and it is necessary to examine environmental factors in different ethnic groups and geographic areas along with the study of H. pylori strains to define better the risk factors associated with distal gastric cancer. (Cancer Epidemiol Biomarkers Prev 2005;14(8):1869–73)

Introduction

Stomach cancer was the most common form of cancer in the world in the 1970s and early 1980s and is now surpassed only by lung cancer. The incidence of gastric cancer shows marked variation among countries in the world (1). Incidence rates are especially high in Japan and other Eastern Asian countries; other areas in the world, including Eastern Europe and parts of Latin America (2), have high incidence rates of gastric cancer as well.

Gastric cancer is a multifactorial disease. Mortality rates for this cancer worldwide have been declining for several decades (3). Despite the decline in distal gastric cancer in many countries of the world, it remains a major public health problem. The number of new cases in the elderly population of both developed and developing countries is rising. It is estimated that more than a million cases per year will occur in the next 10 years (1).

Since 1991, epidemiologic evidence has shown that gastric cancer is associated with Helicobacter pylori colonization (4). However, many studies have shown that even through certain geographic areas along with the study of H. pylori strains to define better the risk factors associated with gastric cancer risk and it is necessary to examine environmental factors in different ethnic groups and geographic areas along with the study of H. pylori strains to define better the risk factors associated with distal gastric cancer. (Cancer Epidemiol Biomarkers Prev 2005;14(8):1869–73)

IL-1B

Two diallelic polymorphisms in IL-1B have been reported (Fig. 1), each one representing C-T base transitions at positions −511 and −31. IL-1β is up-regulated in the presence of H. pylori and is important in initiating and amplifying the inflammatory response to this infection. IL-1β is also a potent inhibitor of gastric acid secretion (12). A biallelic polymorphism at positions −31 and −511 in the promoter of the IL-1B gene have been associated with the development of gastric cancer and its precursors (Table 1; refs. 13-16).

IL-1RN

The IL-1RN gene has a penta-allelic 86-bp variable number tandem repeat in intron 2, of which allele 2 (IL-1RN/2) is associated with a wide range of chronic inflammatory and autoimmune conditions and enhanced IL-1β secretion (Fig. 2). The alleles 1, 2, 3, 4, and 5 in IL-1 RN gene, represent four, two, five, three, and six repeats of the 86-bp tandem repeat (see Fig. 2). As described below, the presence of allele 2 has been associated with increased risk of distal gastric cancer and its precursors (14, 15, 17, 18).

Interactions of IL-1 Polymorphisms and Gastric Cancer

The first indication of IL-1 polymorphisms and their association with increased risk for gastric cancer was reported by El-Omar et al. (11). El-Omar et al. recently reported that functional polymorphisms in the genes for IL-1β and its endogenous receptor antagonist (IL-1RN) were...
Figure 1. Schematic illustration of polymorphisms in the IL-1B gene. Allele frequencies of the single-nucleotide polymorphisms (SNP) in the promoter region of the IL-1B gene at positions −511 and −31. SNP -511T (associated with higher IL-1β secretion) is in complete linkage disequilibrium with −31C. From an eastern European population (19).

associated with increased risk of gastric cancer and its precursors (11, 13). They found also that those polymorphisms were associated with hypochlorhydria. Furthermore, the authors noted that IL-1B −31 and −511 were in almost complete linkage disequilibrium.

Studies from Portugal later confirmed and extend the observations. IL-1B −511T carriers who were also homozygous for the short allele of IL-1RN 2/2 had an increase gastric carcinoma risk [odds ratio (OR), 3.3; 95% confidence interval (95% CI), 1.3-8.2]. The authors also found that patients with greater risk for gastric carcinoma were those carrying both bacterium and host high-risk genotypes (15). A second Portuguese study, the authors found that for chronic atrophic gastritis and gastric cancer, the odds of developing disease increased with the number of risk genotypes (17). These studies show that the combination of bacteria and host genotypes can be useful in defining a specific genetic profile associated with high risk for gastric cancer.

The carriage of multiple proinflammatory polymorphisms confers greater risk for the development of distal gastric cancer. This was recently confirmed by El-Omar et al. (12) in a study in which the ORs (95% CIs) increased from 2.8 (1.6-5.1) for one, 5.4 (2.7-10.6) for two, and 27.3 (7.4-99.8) for three or more high-risk genotypes. The same synergetic effect of H. pylori virulence factors and IL-1 polymorphisms was reported in association with the development of severe histologic changes in the gastric mucosa in German patients (19). The association of IL-1B gene polymorphism and gastric cancer was investigated in high- and low-prevalence regions in China (20). The authors found that IL-1B −511 polymorphism was associated with gastric cancer. This association was less obvious in areas of high prevalence of H. pylori and consequently more gastric cancer. A study from Taiwan has confirmed this observation (21). The study in China did not find complete linkage disequilibrium between IL-1B −511 and −31. The same observation has been reported in a study from Korea (22). In contrast, there are some studies that report a lack of association between IL-1B polymorphisms and gastric cancer. Lee et al. (22) in Korea did not find any association between IL-1B −31 or IL-1RN*2 polymorphisms and increased risk of gastric cancer. Matsukara et al. (18) reported an ethnic difference in the association between the IL-1B polymorphism and gastric atrophy. In the same report, there was no association of the IL-1B polymorphism and the risk of gastric atrophy in Thai and Vietnamese patients.

Interactions of IL-1B Polymorphisms with Other Diseases

The IL-1B polymorphisms −511 and IL-1RN 2/2 have been associated with esophagitis in patients who are not colonized with H. pylori. Koivurova et al. (23) reported that the simultaneous carriage of those two polymorphisms is significantly associated with esophagitis. Garcia-Gonzalez et al. (24) confirmed that the same IL-1B and IL-1RN polymorphisms that are associated with high risk of distal gastric adenocarcinoma are associated with a reduced risk of duodenal ulcer.

Tumor Necrosis Factor-A

TNF-α is one of the proinflammatory cytokines highly expressed in H. pylori gastritis and a potent inhibitor of gastric acid secretion (25, 26). Although several polymorphisms have been reported in the TNF-A promoter, the majority of studies have been focused on the G/A polymorphism at position −307 (Fig. 3), because most of the other polymorphisms are functionally silent. Several studies found a higher concentration of TNF-α in patients with the polymorphism at position −307 with malignant tumors (27, 28).

As noted above, TNF-α is a proinflammatory cytokine, which is a mediator of the immune response in H. pylori and

Table 1. IL-1 genotype frequencies (%) in gastric cancer and controls

<table>
<thead>
<tr>
<th>Locus</th>
<th>Genotype</th>
<th>Cases (n = 366)</th>
<th>Controls (n = 429)</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1B −31</td>
<td>T/T</td>
<td>35.0</td>
<td>51.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>T/C</td>
<td>47.0</td>
<td>38.3</td>
<td>1.8 (1.3-2.4)</td>
</tr>
<tr>
<td></td>
<td>C/C</td>
<td>18.0</td>
<td>10.7</td>
<td>2.5 (1.6-3.8)</td>
</tr>
<tr>
<td>IL-1B −511</td>
<td>C/C</td>
<td>34.7</td>
<td>50.6</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>C/T</td>
<td>46.4</td>
<td>39.7</td>
<td>1.8 (1.3-2.4)</td>
</tr>
<tr>
<td></td>
<td>T/T</td>
<td>18.9</td>
<td>10.7</td>
<td>2.6 (1.7-3.9)</td>
</tr>
</tbody>
</table>

NOTE: Modified from ref. 11.

Figure 2. IL-1RN gene has a penta-allelic 86-bp variable number tandem repeat in intron 2, of which the allele 2 (IL-1RA*2) had been associated with enhanced IL-1β production. Relative frequencies are indicated for each allele. From an eastern European population (19).

Figure 3. Schematic illustration of TNF-A polymorphism. Allele frequencies from an eastern European population.
IL-10 polymorphisms are crucial in the complex genetic predisposition to H. pylori colonization in certain patient subgroups. Kunstmann et al. (29) reported that TNF-A –307 wild type is associated with duodenal ulcer in female patients independent of H. pylori status. The functional promoter polymorphism in this gene not only plays an important role in H. pylori–induced gastritis but also doubles the risk of non-cardia gastric cancer without any association with the risk of esophageal or cardia gastric cancer (12). Almost identical results were reported by Machado et al. (17). The authors found that carriers of TNF-A –307A* allele have an increased risk of gastric cancer with an OR of 1.9 (95% CI, 1.3-2.7).

In contrast, some studies did not find an association between TNF-A –307 polymorphism and gastric cancer. Zambon et al. (30) in Italy studied 210 controls and 475 patients with esophageal or gastric cancer. Their results suggested that TNF-A –307 might be involved in favoring H. pylori infection and the inflammatory response of the infected gastric mucosa but not favoring precancerous intestinal metaplasia or non-cardia gastric cancer. A recent report from Korea also indicated that not only TNF-A –307 but also four other polymorphisms (–1031, –863, –857, and –238) have no association with gastric cancer (31). The differences in polymorphism profile were not statistically significant between gastric cases and controls.

Whereas in some in vitro studies, allele A of this single nucleotide polymorphism was associated with heightened TNF-α secretion, other studies did not find such a correlation. Rad et al. (32) studied the influence of the TNF-A –307 polymorphism on mucosal cytokine expression and they show no significant differences in TNF-α level between different allele carriers. These results suggest that this polymorphism may not influence cytokine expression. However, it is important to extend the number of studies in this area to confirm or refute these findings.

Table 2. Frequencies (%) and age-, sex-, and race-adjusted ORs for the association of inflammatory polymorphisms in IL-1B, IL-1RN, IL-10, and TNF-A with non-cardia gastric cancer

<table>
<thead>
<tr>
<th>Polymorphisms</th>
<th>Cases (n = 188)</th>
<th>Controls (n = 210)</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11.7</td>
<td>35.7</td>
<td>1.0</td>
</tr>
<tr>
<td>1</td>
<td>39.4</td>
<td>40.5</td>
<td>2.8 (1.6-5.1)</td>
</tr>
<tr>
<td>2</td>
<td>33.0</td>
<td>21.9</td>
<td>5.4 (2.7-10.6)</td>
</tr>
<tr>
<td>3</td>
<td>14.9</td>
<td>1.9</td>
<td>26.3 (7.1-97.1)</td>
</tr>
<tr>
<td>4</td>
<td>1.0</td>
<td>0.0</td>
<td>∞ (undefined)</td>
</tr>
</tbody>
</table>

NOTE: Modified from ref. 12.

IL-10

Inflammatory reactions are an essential component of host defense mechanisms, but prolonged or excessive inflammation is deleterious; therefore, the inflammatory process must be tightly regulated. The key regulators of inflammation are the cytokines, proinflammatory (IL-1α and TNF-α) and the anti-inflammatory (IL-10). The possible roles of proinflammatory cytokine in gastric cancer were noted above; anti-inflammatory cytokines also play a role. In the IL-10 gene promoter, single nucleotide polymorphisms at positions –1082 (G/A), –819 (C/T), and –592 (C/A) have been reported to produce three main haplotypes: GCC, ACC, and ATA (refs. 9, 32; Fig. 4).

Rad et al. (32) have recently shown that carriers of the IL-10 –1082G, –819C, and –592C alleles had higher mucosal IL-10 mRNA than ATA haplotype carriers. These results confirmed the relevance of IL-10 polymorphisms in the down-regulation of the inflammatory response. El-Omar et al. have recently reported that certain polymorphisms in anti-inflammatory cytokine genes, such as IL-10, were associated with more than doubling of the risk of non-cardia gastric cancer (12). Patients homozygous for the hypoactive IL-10 alleles IL-10 –1082A and IL-10 –592A, as well as for the “low IL-10” haplotype ATA (IL-10 –1082A, IL-10 –819T, and IL-10 –592A) had significantly increased risks of non-cardia gastric cancer.

Garza-Gonzalez et al. (33) studied the potential role of IL-10 polymorphisms in gastric cancer patients. They found no association between IL-10 polymorphisms (–592 and –1082) and gastric cancer in a very small study (33 gastric cancer cases and 25 controls).

Association Between Multiple Polymorphisms and Gastric Cancer Risk

The combination of multiple proinflammatory polymorphisms and some anti-inflammatory polymorphisms conferred greater risk for gastric cancer as illustrated in Table 2 (12). The association of IL-10, an anti-inflammatory cytokine, with proinflammatory cytokines such as IL-1α and TNF-α may be explained by the role of IL-10 in down-regulating the proinflammatory cytokines. In addition, some reports suggest an important role for cytokine expression in the level of the inflammatory response observed in vivo (34).

In contrast, the number of inflammatory cytokine polymorphisms was not statistically significantly associated with...
Table 5. Combination of H. pylori and IL-1β genotype in non-atrophic gastritis and non-cardia gastric cancer patients

<table>
<thead>
<tr>
<th>H. pylori and IL-1β –511</th>
<th>NAG</th>
<th>NCGC</th>
<th>OR (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>vacA S/C homozygote</td>
<td>27</td>
<td>1</td>
<td>1 (reference)</td>
<td></td>
</tr>
<tr>
<td>vacA S/T homozygote</td>
<td>35</td>
<td>8</td>
<td>6.2 (0.7-52)</td>
<td>0.1</td>
</tr>
<tr>
<td>vacA S/C homozygote</td>
<td>17</td>
<td>27</td>
<td>43 (5.3-345)</td>
<td><0.001</td>
</tr>
<tr>
<td>vacA S/T homozygote</td>
<td>22</td>
<td>71</td>
<td>87 (11-679)</td>
<td><0.001</td>
</tr>
<tr>
<td>cagA –/– C homozygote</td>
<td>35</td>
<td>4</td>
<td>1 (reference)</td>
<td></td>
</tr>
<tr>
<td>cagA –/– T homozygote</td>
<td>46</td>
<td>8</td>
<td>1.5 (0.4-5.5)</td>
<td>0.52</td>
</tr>
<tr>
<td>cagA+/+ C homozygote</td>
<td>26</td>
<td>38</td>
<td>13 (4.1-40)</td>
<td><0.001</td>
</tr>
<tr>
<td>cagA+/+ T homozygote</td>
<td>28</td>
<td>80</td>
<td>25 (9.8-77)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

The risk of esophageal squamous cell carcinoma, adenocarcinoma of the esophagus, or gastric cardia cancer. ORs for carriage of three or four inflammatory genotypes were 0 (95% CI, 0-10.5), 1.3 (95% CI, 0.2-8.0), and 3.6 (95% CI, 0.8-16.7), respectively.

Other cytokine polymorphisms have been recently described, including IL-8 –251, Thr³⁹⁹Ile, and TLR-4 Asp²⁹⁹Gly and are currently under study for their role in cytokine level and cancer risk.

Effect of Cytokine Polymorphisms and H. pylori Status

An interesting finding in the El-Omar study (12) was the association between cytokine polymorphisms and H. pylori –seropositive status. Tables 3 and 4 show clearly that the ORs are higher in H. pylori – and CagA-positive patients than in the whole population studied in Table 2. This observation has been confirmed in patients with severe histologic changes in the gastric mucosa (20).

The study of Figueiredo et al. (15) is probably the most complete study that shows that the pattern of bacterial and host genotypes may determine risk of developing distal gastrointestinal complaints.

Table 6. Summary of the role of cytokine polymorphisms in the development of upper gastrointestinal pathologies

<table>
<thead>
<tr>
<th>Reference</th>
<th>Studied population</th>
<th>Ethnicity</th>
<th>Cytokine polymorphism</th>
<th>Finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>(29)</td>
<td>209 H. pylori<sup>+</sup>, 184 H. pylori<sup>−</sup></td>
<td>Caucasian (German)</td>
<td>TNF-A –308 G/G</td>
<td>Risk factor for duodenal ulcer in H. pylori<sup>+</sup> females</td>
</tr>
<tr>
<td>(11)</td>
<td>393 cases, 430 controls</td>
<td>Caucasian (Americans)</td>
<td>Haplotype IL-1B –31C/IL-1RN*2</td>
<td>Increased risk of gastric cancer</td>
</tr>
<tr>
<td>(17)</td>
<td>152 cases, 218 controls</td>
<td>Portuguese</td>
<td>IL-1B –511T+ IL-1RN*2/2</td>
<td>Increased risk for gastric carcinoma and synergistic interaction between both polymorphisms</td>
</tr>
<tr>
<td>(13)</td>
<td>579 H. pylori<sup>+</sup>, 227 H. pylori<sup>−</sup></td>
<td>Asian (Japanese)</td>
<td>IL-1B –511 T/T</td>
<td>Associated with atrophic gastritis</td>
</tr>
<tr>
<td>(15)</td>
<td>221 chronic gastritis, 222 gastric carcinoma</td>
<td>Portuguese</td>
<td>IL-1B –511T+</td>
<td>Patients with greater risk for gastric carcinoma were those with both bacterial (cagA<sup>+</sup>/vacAs1<sup>+</sup>) and host high-risk genotypes. Higher mucosal IL-1β levels</td>
</tr>
<tr>
<td>(16)</td>
<td>117 H. pylori<sup>+</sup> CagA<sup>+</sup> patients</td>
<td>Asian (Japanese)</td>
<td>IL-1RN*2</td>
<td>Increased risk for the development of atrophic gastritis, intestinal metaplasia, and severe inflammation</td>
</tr>
<tr>
<td>(19)</td>
<td>210 H. pylori<sup>+</sup></td>
<td>Caucasian (German)</td>
<td>IL-1B –511T/31C</td>
<td>Higher prevalence if host is colonized with bacterial high-risk genotypes (cagA<sup>+</sup>/vacAs1<sup>+</sup>) as well. The carriage of multiple proinflammatory polymorphisms confers greater risk for the development of gastric cancer.</td>
</tr>
<tr>
<td>(12)</td>
<td>188 cases, 210 controls</td>
<td>Caucasian (Americans)</td>
<td>IL-1B –511T+</td>
<td>The carriage of multiple proinflammatory polymorphisms confers greater risk for the development of gastric cancer</td>
</tr>
<tr>
<td>(18)</td>
<td>646 patients with various gastrointestinal complaints</td>
<td>Asian (Japanese, Chinese, Vietnamese, Thai)</td>
<td>IL-1RN*2 IL-10 ATA/ATA TNF-A –308 A/ IL-1B –511</td>
<td>No association of the IL–1β polymorphism and the risk of gastric atrophy in Thai and Vietnamese patients</td>
</tr>
<tr>
<td>(20)</td>
<td>86 cases, 169 controls</td>
<td>Asian (Chinese)</td>
<td>IL-1B –511 T/T IL-1B –31C/ IL-1RN*2/2</td>
<td>Associated with gastric cancer</td>
</tr>
<tr>
<td>(22)</td>
<td>190 gastric cancer, 117 duodenal ulcer, 172 controls</td>
<td>Asian (Korean)</td>
<td>IL-1B –31C/ IL-1RN*2/2</td>
<td>Lack of association with an increase in risk of gastric cancer and duodenal ulcer</td>
</tr>
<tr>
<td>(33)</td>
<td>33 cases, 25 controls</td>
<td>Hispanic (Mexican)</td>
<td>IL-1B –31C+</td>
<td>Associated with increased risk of gastric cancer</td>
</tr>
<tr>
<td>(30)</td>
<td>129 gastric cancer, 792 upper gastrointestinal pathologies</td>
<td>Caucasian (Italians)</td>
<td>IL-1RN IL-10 (–592, 1082) TNF-A IL-1B –31</td>
<td>No association</td>
</tr>
<tr>
<td>(21)</td>
<td>142 cases, 164 controls</td>
<td>Asian (Chinese)</td>
<td>IL-1B –511</td>
<td>No difference between cases and controls</td>
</tr>
<tr>
<td>(32)</td>
<td>207 H. pylori<sup>+</sup>, 535 H. pylori<sup>−</sup></td>
<td>Caucasian (89% German)</td>
<td>IL-1B –511T+ IL-1RN*2 IL-10 GCC IL-10 ATA TNF-A</td>
<td>Associated with increased mucosal IL-1β expression and prevalence of atrophic gastritis. Higher mucosal IL-10 mRNA levels Colonization by more virulent H. pylori strains No influence on mucosal cytokine expression</td>
</tr>
</tbody>
</table>
gastric cancer (Table 5). Bacterial status and genotype were determined by PCR and not by serology. The study concentrated on two of the major virulence factors in H. pylori vacA and cagA. In particular, the authors were able to assess the s1 and m1 regions of vacA that have been associated with the most severe H. pylori-related disease outcome. Overall, the findings suggest that it is possible to define a disease risk profile combining host and bacterial genotypes in distal gastric cancer, which may be useful in prevention programs.

Table 6 summarizes the association of different cytokine polymorphisms, H. pylori carriage, and gastric pathologies.

Conclusions

It is clear that colonization with H. pylori increases the risk of developing distal gastric cancer and perhaps there are further additive effects on risk if specific host cytokine polymorphisms coincide with specific bacterial genotypes. We have presented some of the most recent evidence for these associations. Furthermore, the combination of more virulent H. pylori strains and the expression of specific cytokine polymorphisms contribute to an increasing risk of developing distal gastric cancer. We have mentioned that there is a need for more studies in different geographic regions of the world and in a wide diversity of ethnic populations to explore whether colonization with virulent H. pylori strains and expression of cytokine polymorphisms contribute to an increased risk of developing distal gastric adenocarcinoma. As Furuta et al. mentioned in a recent editorial (35), the study of polymorphisms alone seems insufficient to assess gastric cancer risk and they suggest examining environmental factors in different ethnic groups and geographic areas along with the study of H. pylori strains. Studies of this type may be required to determine the most important risk factors associated with distal gastric cancer in a particular region of the world.

References

Role of Cytokine Polymorphisms in the Risk of Distal Gastric Cancer Development

Updated version
Access the most recent version of this article at:
http://cebp.aacrjournals.org/content/14/8/1869

Cited articles
This article cites 32 articles, 7 of which you can access for free at:
http://cebp.aacrjournals.org/content/14/8/1869.full#ref-list-1

Citing articles
This article has been cited by 2 HighWire-hosted articles. Access the articles at:
http://cebp.aacrjournals.org/content/14/8/1869.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.