Short Communication

GSTM1, GSTT1, and GSTP1 Polymorphisms and Risk of Advanced Colorectal Adenoma

Lee E. Moore,1 Wen-Yi Huang,1 Nilanjan Chatterjee,1 Marc Gunter,1 Stephen Chanock,1 Meredith Yeager,3,4 Bob Welch,3,4 Paul Pinsky,1 Joel Weissfeld,5 and Richard B. Hayes 1

1Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda; 2Center for Cancer Research, National Cancer Institute, NIH, Department of Health and Human Services, 3Core Genotyping Facility, Advanced Technology Center, National Cancer Institute, Gaithersburg; 4Intramural Research Support Program, Science Applications International Corporation, National Cancer Institute, Frederick Cancer Research and Development Center, Frederick, Maryland; and 5University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania

Abstract

Cigarette smoking is a risk factor for colon adenoma. The glutathione S-transferase enzymes are involved in the detoxification of carcinogenic compounds including those found in tobacco smoke, and thus, may be important modifiers of individual risk of developing this disease. We examined the prevalence of GSTM1 and GSTT1 gene deletions, and two GSTP1 polymorphisms in 772 cases with advanced colorectal adenomas (>1 cm, villous elements or high-grade dysplasia) of the distal colon (descending or sigmoid colon or rectum) and 777 sigmoidoscopy negative controls enrolled in the screening arm of the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Epidemiologic data on smoking was collected by self-administered questionnaire and DNA was extracted from whole blood or buffy coat. For GSTM1 and GSTT1, we used a newly developed TaqMan-based assay capable of discriminating heterozygous (+/-) individuals from those with two active alleles (+/+) and homozygous deletions (−/−). For GSTP1, the I105V and the A114V substitutions were identified using end point 5′ nuclease assays (TaqMan). Adjusted odds ratios (OR) and 95% confidence intervals (95% CI) were determined using unconditional logistic regression, controlling for age, race, and gender. Advanced adenoma risk was increased in current/former smokers (OR, 1.4; 95% CI, 1.2-1.8). Risks were decreased in subjects with ≥1 inactive GSTM1 alleles (OR, 0.6; 95% CI, 0.4-0.9); and the association was independent of smoking status (P interaction = 0.59). Having ≥1 inactive GSTT1 allele was associated with increased risk among smokers (OR, 1.4; 95% CI, 1.1-1.9; P trend = 0.02) but not among never smokers (OR, 0.9; 95% CI, 0.6-1.3) and a significant interaction between smoking and genotype was observed (P interaction = 0.05). In summary, this is the first study to report associations between colorectal adenomas and GSTM1 wild-type and GSTT1 null allele among smokers. These findings only became apparent using a newly developed assay able to distinguish heterozygous from wild-type individuals. Our data provide evidence that phenotypic differences between these two groups exist. (Cancer Epidemiol Biomarkers Prev 2005; 14(7):1823–7)

Introduction

Colorectal adenoma is a recognized precursor of colorectal cancer based on epidemiologic, histologic, and genetic studies demonstrating shared genetic alterations (1, 2). Tobacco smoking is an established risk factor for colorectal adenoma and tobacco smoking. Tobacco smoke is a rich source of polycyclic aromatic hydrocarbons (PAH), aromatic amines, N-nitroso compounds and other carcinogens (3, 4). The colon is also exposed to PAHs and heterocyclic amines through consumption of foods cooked at high temperatures, another potential risk factor for colorectal adenoma (5, 6). Activated PAHs and N-nitroso compounds are substrates for both GSTM1 and GSTT1 enzymes and are able to induce their expression (7). Expression is also induced by dietary consumption of isothiocyanates found in cruciferous vegetables (8).

The GSTM1 gene detoxifies hydrophobic electrophiles such as PAH-derived epoxides found in cigarette smoke (9), whereas GSTT1 catalyzes the conjugation of glutathione with substrates such as halogenated alkanes and epoxides (10, 11). The GSTP1 enzyme selectively detoxifies the carcinogenic epoxide of benzo(a)pyrene, a highly carcinogenic metabolite of PAHs (10).

Polymorphic variants of both genes were previously identified by the presence or absence of a PCR fragment using gel electrophoresis, a method which groups individuals having two functional alleles (+/+) and heterozygotes with one active and one inactive allele (+/−) as one group. In this study, a novel quantitative PCR-based method able to discriminate subjects carrying 0, 1, or 2 active alleles was used. Two single nucleotide polymorphisms in the GSTP1 gene were also analyzed, one at codon 105 (Ile→Val) and the other at codon 114 (Ala→Val).

In this study, we investigated advanced colorectal adenoma risk in relation to polymorphic variants in the GSTM1, GSTT1, and GSTP1 genes among participants randomized to the screening arm of the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. We hypothesized that variation in risk associated with glutathione S-transferase polymorphisms would primarily be observed among smokers.

Materials and Methods

The Prostate, Lung, Colorectal, and Ovarian Cancer Trial. This trial, which is being carried out by the National Cancer Institute, has randomized 77,465 screening arm participants (38,350 men and 39,115 women) and an equal number of nonscreened controls, ages 55 to 74, at 10 screening centers throughout the U.S. (12, 13).
Glutathione S-Transferase Polymorphisms, Smoking, and Colorectal Adenoma Risk

Study Population. Cases and controls for this study were drawn from the screening arm participants at the 10 screening centers of the Prostate, Lung, Colorectal, and Ovarian Cancer Trial who filled out a risk factor questionnaire, had a successful sigmoidoscopy (insertion to at least 50 cm with >90% of mucosa visible or a suspect lesion identified), and provided a blood sample for use in etiologic studies (September 1993-September 1999, applied conditions described; n = 42,037; ref 14). Of these participants, we excluded 4,834 with a self-reported history of ulcerative colitis, Crohn’s disease, familial polyposis, colorectal polyps, or colorectal cancer (except basal cell and squamous cell skin cancer) (15). We randomly selected 772 of 1,234 cases with at least one advanced colorectal adenoma (adenoma ≥1 cm or containing high-grade dysplasia or villous, including tubulovillous elements) in the distal colon (descending colon and sigmoid or rectum), and 777 or 26,651 control participants with a negative sigmoidoscopy screening (ie, no polyp or other suspect lesion), frequency-matched to the cases by gender and ethnicity (non-Hispanic White, non-Hispanic Black, Hispanic, and others). Study subjects were predominantly non-Hispanic Whites (94%). Among the 772 cases, 572 (74%) had a lesion ≥1 cm, 489 (63%) showed advanced histologic features, and 245 (32%) had multiple adenoma. Also, 631 (82%) cases had an advanced adenoma of the descending colon or sigmoid and 232 (30%) had an advanced adenoma of the rectum, including subjects having lesions at both sites. Questionnaire data and blood collection were previously reported (15). For risk analysis, cases with at least one advanced colorectal adenoma (adenoma ≥1 cm or containing high-grade dysplasia or villous, including tubulovillous elements) in the distal colon (descending colon and sigmoid or rectum) were used as a comparison group. Dietary analyses included >15.60). Subjects who reported never eating broccoli were also included as a comparison group. Dietary analyses included adjustment for exercise and fiber intake in addition to factors shown to vary with risk of colorectal cancer, including age (55-59, 60-64, 65-69, 70-74), and when not used as a stratifying factor, smoking status (never, ever smoker). Adjustments for other suspected confounders, including education, history of colorectal cancer in a first-degree relative, body mass index, and dietary red meat intake were not included in the model because they did not alter the OR by 10% and/or did not have a P value ≤0.1 in the multivariate model. Associations between broccoli consumption was analyzed by dividing cases and controls above and below the median intake of broccoli (g/d), and also by quartiles (Q1, 0.3-5.9; Q2, 5.9-10.9; Q3, >10.9-15.9; Q4, >15.60). Subjects who reported never eating broccoli were also included as a comparison group. Dietary analyses included adjustment for exercise and fiber intake in addition to factors listed above (age, sex category, and race). Tests for interaction were conducted using a likelihood ratio test. Based on a novel extension of polytomous logistic regression for multivariate outcome analysis (21), we studied whether the prevalence of glutathione S-transferase alleles varied for three characteristics of adenomas: size (≥1 versus <1 cm), multiplicity (multiple versus single), and advanced histologic features (high-grade dysplasia or villous structure versus absence of these features), estimating case-case ORs for each characteristic after controlling for the other two characteristics. All P values were two-sided. Individuals with missing values were excluded from specific analyses.

Results

Distributions between cases and controls were essentially the same for matching factors, gender, and race. However, cases tended to be older, more likely to report a first-degree family history of colorectal cancer, have less education, and a higher body mass index at study entry (Table 1).
Cigarette smoking was associated with advanced adenoma, with greater risks for current smokers and recent smokers who quit <10 years ago (OR, 2.4; 95% CI, 1.8-3.1) than for former smokers who quit >10 years ago (OR, 1.1; 95% CI, 0.9-1.4; \(P_{\text{trend}} < 0.001 \); Table 2). Also in Table 2, genotype distributions are presented for cases and controls. A lower risk of colorectal adenoma was observed among those carrying \(\geq 1 \) null GSTM1 allele (\(-/-\)) when compared with individuals carrying two active alleles (\(+/+\)) (OR, 0.6; 95% CI, 0.4-0.9). Lower relative risks were not observed when heterozygotes were grouped with those carrying two active alleles as would have been observed by PCR fragment analysis (OR, 0.9; 95% CI, 0.8-1.2, data not shown). Neither the GSTT1 nor GSTP1 variants were associated with adenoma risk. By multivariate disease characteristic analysis (21), only the GSTP1 GG genotype at codon 105 was associated with large adenomas (\(\geq 1 \) cm) compared with small adenomas (\(P_{\text{trend}} < 0.006 \)); no differentials were noted for any other genotype with tumor multiplicity or histologic characteristics (data not shown).

Having \(\geq 1 \) GSTM1 null allele was protective regardless of smoking status (Table 3). Ever smokers having \(\geq 1 \) null GSTT1 allele had an increased risk of adenoma (\(P_{\text{trend}} = 0.02 \)); however, tests for gene-environment interactions were only significant when +/− and −/− individuals were combined (\(P_{\text{interaction}} = 0.05 \)).

We also examined adenoma risk by GSTM1 and GSTT1 genotype and broccoli intake (<, \(\geq \)median) but the findings were difficult to interpret because a consistent association between broccoli intake and adenoma risk was not observed (data not shown). A protective effect of high consumption of broccoli was only observed among GSTM1 (\(+/+\)) individuals (OR, 0.5; 95% CI, 0.2-1.2) compared with GSTM1 (\(+/-\)) individuals with low consumption of broccoli (<9.1 g/d). For the GSTT1 gene, individuals with \(\geq 1 \) null allele continued to be at lower risk regardless of broccoli intake. Increased risks were only associated with the GSTT1 (\(-/-\)) polymorphism in the high broccoli consumption group (OR, 1.7; 95% CI, 1.1-2.7) compared with GSTT1 (\(+/+\)) in the low broccoli consumption group. The same results were obtained when individuals who never consumed broccoli were used as a comparison group. Risks associated with genetic variants were not modified by dietary red meat or estimated dietary benzo(a)pyrene, PhIP, or MeIQx intake when all subjects or only subjects who had never smoked were considered (data not shown).

Discussion

This investigation of glutathione S-transferase polymorphisms and advanced adenoma risk revealed reduced risks in carriers of \(\geq 1 \) GSTM1 null allele, however, this association was not related to tobacco use or other factors examined. If this result were seen only among subjects who consumed higher amounts of broccoli, this finding could have been explained by isothiocyanate-induced protection, however, this was not what we observed. These findings remain puzzling, as they could have been caused by small numbers in the homozygous active (\(+/+\)) group, and should be confirmed. Excess risks associated with carriage of \(\geq 1 \) GSTT1 null allele were only observed among smokers. Both of these findings would not have been observed by the method of PCR fragment analysis on gel electrophoresis. The two single nucleotide polymorphisms associated with amino acid substitutions at codons 105 and 114 of the GSTP1 gene did not contribute to overall adenoma risk in this study, however, the GG genotype at codon 105 was significantly associated with adenoma size.

GSTM1 and GSTT1 have been widely studied in relation to colorectal cancer because of their high expression in the

Table 1. Description of subjects enrolled in the nested case-control study of colorectal adenoma within the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Controls ((n = 777))</th>
<th>Cases ((n = 772))</th>
<th>(P_{\chi^2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>male</td>
<td>536 (69.0)</td>
<td>535 (69.3)</td>
<td>0.9</td>
</tr>
<tr>
<td>female</td>
<td>241 (31.0)</td>
<td>237 (30.7)</td>
<td></td>
</tr>
<tr>
<td>Age at interview</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55-59</td>
<td>363 (46.7)</td>
<td>257 (33.3)</td>
<td><0.0001</td>
</tr>
<tr>
<td>60-64</td>
<td>210 (25.7)</td>
<td>244 (31.6)</td>
<td></td>
</tr>
<tr>
<td>65-69</td>
<td>140 (18.0)</td>
<td>172 (22.3)</td>
<td></td>
</tr>
<tr>
<td>70-74</td>
<td>74 (9.5)</td>
<td>99 (12.8)</td>
<td></td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>729 (93.8)</td>
<td>725 (93.9)</td>
<td>1.0</td>
</tr>
<tr>
<td>Black</td>
<td>23 (3.0)</td>
<td>22 (2.9)</td>
<td></td>
</tr>
<tr>
<td>Others*</td>
<td>25 (3.2)</td>
<td>25 (3.2)</td>
<td></td>
</tr>
<tr>
<td>First-degree family member with history of colorectal cancer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no</td>
<td>707 (91.0)</td>
<td>675 (87.4)</td>
<td>0.02</td>
</tr>
<tr>
<td>yes</td>
<td>70 (9.0)</td>
<td>97 (12.6)</td>
<td></td>
</tr>
<tr>
<td>Level of education (y)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\leq 11)</td>
<td>50 (6.4)</td>
<td>72 (9.3)</td>
<td>0.001</td>
</tr>
<tr>
<td>12 or high school</td>
<td>176 (22.7)</td>
<td>191 (24.8)</td>
<td></td>
</tr>
<tr>
<td>some college(^1)</td>
<td>247 (31.8)</td>
<td>276 (35.8)</td>
<td></td>
</tr>
<tr>
<td>college and above</td>
<td>303 (39.1)</td>
<td>232 (30.1)</td>
<td></td>
</tr>
<tr>
<td>Body mass index at interview</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(<18.5)</td>
<td>2 (0.3)</td>
<td>5 (0.7)</td>
<td>0.3</td>
</tr>
<tr>
<td>(\geq 18.5) to (<25)</td>
<td>219 (28.2)</td>
<td>200 (25.9)</td>
<td></td>
</tr>
<tr>
<td>(\geq 25) to (<30)</td>
<td>357 (46.0)</td>
<td>349 (45.2)</td>
<td></td>
</tr>
<tr>
<td>(\geq 30)</td>
<td>188 (24.2)</td>
<td>215 (27.9)</td>
<td></td>
</tr>
<tr>
<td>Pathologic characteristics of adenoma(s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size (cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(<1)(^1)</td>
<td>—</td>
<td>200 (25.9)</td>
<td></td>
</tr>
<tr>
<td>(\geq 1)</td>
<td>—</td>
<td>572 (74.1)</td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>—</td>
<td>527 (68.3)</td>
<td></td>
</tr>
<tr>
<td>>1</td>
<td>—</td>
<td>245 (31.7)</td>
<td></td>
</tr>
<tr>
<td>Histology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nonadvanced</td>
<td>—</td>
<td>283 (36.7)</td>
<td></td>
</tr>
<tr>
<td>advanced(^1)</td>
<td>—</td>
<td>489 (63.3)</td>
<td></td>
</tr>
</tbody>
</table>

\(^{1}\)Hispanic (0.9%), Asian (1.7%), Pacific Islander (0.4%), and American Indian native (0.3%).

\(^{2}\)Adenoma size \(<1 \) cm, with high-grade dysplasia or villous elements.

\(^{3}\)Two hundred and eighty-nine subjects (50.5%) with adenoma size \(\geq 1 \) cm, with high-grade dysplasia or villous elements.

\(^{4}\)Adenomas with high-grade dysplasia or villous elements.
gastrointestinal tract and their role in detoxification of food-
and tobacco-derived carcinogens. Studies have not generally
found significant associations (22-25). We observed associa-
tions for \textit{GSTM1} and \textit{GSTT1} with adenoma risk only when
+/+ and +/C0 individuals were analyzed separately. Our data
provide supportive evidence that phenotypic differences
between +/+ and +/C0 individuals exist. As in previous
studies, our findings would have been negative had subjects
with \(z \geq 1\) active alleles been combined.

Although genotype-phenotype concordances have been
shown with the PCR fragment analysis approach for
\textit{GSTM1} and \textit{GSTT1}, it is unclear whether a gene dosage effect exists
(26-29). Experimental studies suggested a bimodal distribution
of \textit{ex vivo} GSTM1 overall (26); however, the authors also
reported that \(\approx 20\%\) of the subjects were considered “very
highly active.” Similar studies of \textit{GSTT1} (27-29) enzymatic
activity were clearly trimodal, however, additional experimen-
tal studies employing genotyping approaches that categorize
allele count are needed to more precisely specify these
relationships.

The results of this study do not support a relationship
between \textit{GSTP1} polymorphisms and adenoma risk. We
also found no evidence for a modifying effect of glutathione
S-transferase genotype on the association between adenoma

<table>
<thead>
<tr>
<th>Control smoking status</th>
<th>Controls (n = 777)</th>
<th>Cases (n = 772)</th>
<th>OR (95% CI)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Never</td>
<td>315 (40.8)</td>
<td>260 (33.8)</td>
<td>1.0</td>
</tr>
<tr>
<td>Former, quit (\geq 10) y</td>
<td>302 (39.2)</td>
<td>272 (35.4)</td>
<td>1.1 (0.9-1.4)</td>
</tr>
<tr>
<td>Current and recent quitters (<10 y)</td>
<td>111 (14.4)</td>
<td>198 (25.8)</td>
<td>2.4 (1.8-3.1)</td>
</tr>
<tr>
<td>P\text{trend}</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ever</td>
<td>419 (57.1)</td>
<td>473 (64.5)</td>
<td>1.4 (1.2-1.8)</td>
</tr>
<tr>
<td>Cigar/pipe</td>
<td>43 (5.6)</td>
<td>39 (5.1)</td>
<td>1.2 (0.7-1.9)</td>
</tr>
</tbody>
</table>

\textit{GSTM1}

\begin{itemize}
 \item +/+ 37 (5.4) 62 (9.4) 1.0
 \item +/+ and \(-/-\) combined 652 (94.7) 601 (90.7) 0.6 (0.4-0.9)
\end{itemize}

\textit{GSTT1}

\begin{itemize}
 \item +/+ 241 (35.3) 221 (35.4) 1.0
 \item +/C0 343 (48.9) 340 (49.3) 1.1 (0.9-1.4)
 \item \(-/-\) 118 (16.8) 129 (17.3) 1.2 (0.9-1.7)
 \item +/C0 and \(-/-\) 461 (65.7) 469 (68.0) 1.1 (0.9-1.4)
\end{itemize}

\textit{GSTP1—1105V}

\begin{itemize}
 \item AA 317 (45.4) 282 (41.4) 1.0
 \item AG 293 (42.0) 314 (46.1) 1.2 (1.0-1.5)
 \item GG 88 (12.6) 85 (12.5) 1.1 (0.8-1.6)
\end{itemize}

\textit{GSTP1—A114V}

\begin{itemize}
 \item CC 596 (83.5) 591 (84.4) 1.0
 \item CT 114 (16.0) 103 (14.7) 0.9 (0.7-1.2)
 \item TT 4 (0.6) 6 (0.9) 1.6 (0.4-5.7)
\end{itemize}

*Adjusted for age, race, and gender.

*Smoking pipe and cigar and former smokers combined were not included in the trends estimation.

*Adjusted for age, race, and gender.

Cancer Epidemiol Biomarkers Prev 2005;14(7). July 2005

*Adjusted for age, race, and gender.

*Adjusted for age, race, and gender.
and dietary sources of PAHs or hydrogenated amorphous carbons. Our analysis of dietary isothiocyanates from broccoli was difficult to interpret, possibly due to small numbers per subgroup and misclassification with respect to dietary exposure.

In conclusion, a lower risk of colorectal adenoma was observed among individuals carrying ≥1 inactive GSTM1 allele. Having ≥1 inactive GSTT1 allele was associated with a moderate increased risk among smokers. A significant interaction between ever smoking and genotype was observed when +/+ and −/− individuals were combined. GSTP1 variants were unrelated to risk. In summary, this is the first study to report associations between colorectal adenomas and GSTM1 wild-type and GSTT1 null alleles among smokers. These findings only became apparent using a newly developed assay to distinguish heterozygous and wild-type individuals. Our data provide evidence that phenotypic differences between these two groups exist.

Acknowledgments
We thank Drs. John K. Gohagan and Philip Prorok, Division of Cancer Prevention, National Cancer Institute, the Screening Center investigators and staff of the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial; Drs. Rashmi Sinha and Nat Rothman, Division of Cancer Epidemiology and Genetics, National Cancer Institute; Tom Riley and staff, Information Management Services, Inc.; and Barbara O’Brien and staff, Westat, Inc.

References
Cancer Epidemiology, Biomarkers & Prevention

GSTM1, GSTT1, and GSTP1 Polymorphisms and Risk of Advanced Colorectal Adenoma

Lee E. Moore, Wen-Yi Huang, Nilanjan Chatterjee, et al.

Updated version
Access the most recent version of this article at:
http://cebp.aacrjournals.org/content/14/7/1823

Cited articles
This article cites 25 articles, 12 of which you can access for free at:
http://cebp.aacrjournals.org/content/14/7/1823.full#ref-list-1

Citing articles
This article has been cited by 11 HighWire-hosted articles. Access the articles at:
http://cebp.aacrjournals.org/content/14/7/1823.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.