Null Results in Brief

Common Leptin Receptor Polymorphisms do not Modify the Effect of Alcohol Ingestion on Serum Leptin Levels in a Controlled Feeding and Alcohol Ingestion Study

Mark J. Roth, 1 Dina N. Paltoo, 5 Paul S. Albert, 2 David J. Baer, 6 Joseph T. Judd, 6 Joseph Tangrea, 3 and Philip R. Taylor 4

1Nutritional Epidemiology Branch, 2Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, Biometric Research Branch, Division of Cancer Treatment and Diagnosis, Center for Cancer Research, National Cancer Institute, Clinical and Molecular Medicine Program, National Heart, Lung, and Blood Institute, Bethesda, Maryland; and 3Beltsville Human Nutrition Research Center, Department of Agriculture, Agricultural Research Service, Beltsville, Maryland

Abstract

We explored whether serum leptin response to alcohol ingestion was related to common leptin receptor gene polymorphisms, K109R (Lys109Arg), Q223R (Gln223Arg), S343S [Ser(T)343Ser(C)], and K656N (Lys656Asn), of reported physiologic significance during a controlled intervention. Fifty-three participants rotated through three 8-week treatment periods and consumed 0, 15 (equivalent to one drink), or 30 g (equivalent to two drinks) of alcohol (95% ethanol in 12 ounces of orange juice) per day, in random order. During the controlled feeding periods, all food and beverages including alcoholic beverages were prepared and supplied by the staff of the Beltsville Human Nutrition Research Center’s Human Study Facility (Beltsville, MD), and energy intake was adjusted to maintain a constant weight. Blood was collected after an overnight fast on 3 separate days during the last week of each controlled feeding period and pooled for hormone analysis. Circulating serum leptin concentration was measured in duplicate by RIA and genotype analysis was done on DNA extracted from WBC using real-time PCR analysis amplification (TaqMan). Linear mixed models with a single random intercept reflecting a participant effect were used to estimate changes in serum leptin levels at 15 and 30 g of alcohol per day relative to 0 g of alcohol per day. No significant effects were found between common leptin receptor polymorphisms and serum leptin levels (P ≥ 0.26). (Cancer Epidemiol Biomarkers Prev 2005;14(6):1576–8)

Introduction

Leptin is a hormone produced by the adipocyte ob gene, involved in energy balance, and may play a role in carcinogenesis and autoimmune disorders (1-15). We recently showed that moderate alcohol consumption (15-30 g of alcohol per day) increased serum leptin levels in postmenopaual women in a controlled feeding and alcohol ingestion study (1). In that study, 53 healthy, nonsmoking postmenopausal women completed a random-order, three-period crossover design in which each woman received zero (0 g of alcohol), one (15 g of alcohol), or two (30 g alcohol) drinks per day. After accounting for differences in body mass index, consumption of 15 or 30 g of alcohol per day increased serum leptin levels by 7.3% and 8.9%, respectively, over zero alcohol consumption, with younger women (i.e., 49-54 years); demonstrating a significantly stronger association of alcohol consumption level with the increase in serum leptin levels than older women (i.e., 55-79 years; 24.4% versus 3.7% for 30 g of alcohol per day relative to 0 g of alcohol, respectively).

To understand the potential mechanisms influencing serum leptin response to alcohol, we expanded our original findings to explore the leptin response to alcohol on common leptin receptor gene polymorphisms with reported physiologic significance, K109R (Lys109Arg), Q223R (Gln223Arg), S343S [Ser(T)343Ser(C)], and K656N (Lys656Asn; ref. 16). This is the first controlled feeding and alcohol ingestion study to examine variation in serum leptin response in relation to common polymorphisms of the leptin receptor.

Materials and Methods

A detailed description of the Women’s Alcohol Study has been previously reported (17). Briefly, each participant rotated through three 8-week treatment periods and consumed 0, 15 (equivalent to one drink), or 30 g (equivalent to two drinks) of alcohol per day in random order. Alcohol was supplied to each participant as 95% ethanol (Everclear; Pharmco Products, Brookfield, CT) in orange juice (12 ounces) 1 to 2 hours before bedtime. Each controlled feeding period was preceded by a 2- to 5-week washout period during which time the participant consumed no alcohol. During the controlled feeding periods, all food and beverages were prepared and supplied by the Beltsville Human Nutrition Research Center’s Human Study Facility (Beltsville, MD). Study participants were weighed each weekday at the Beltsville facility, and energy intake was adjusted to maintain a constant weight. Blood was collected after an overnight fast on 3 separate days during the last week of each controlled feeding period and pooled for hormone analysis. Circulating serum leptin concentration was measured in duplicate by RIA (Human Leptin RIA Kit, Linco Research, St. Charles, MO) and quantified using a Cobra Quantum Gamma Counter (Packard Instruments, Downers Grove, IL).
Genotyping analysis was done on DNA extracted from WBC using a PureGene kit (Gentra Systems, Inc., Minneapolis, MN) and real-time PCR analysis amplification (TaqMan). Serum leptin concentrations were transformed to the natural log scale to make inferences on relative change and to make outcomes more normally distributed. Linear mixed models with a single random intercept reflecting a participant effect were used to estimate changes in serum leptin levels at 15 and 30 g of alcohol per day relative to 0 g of alcohol per day. Alcohol (three factors) by gene (two factors) interactions were examined by including appropriate cross product terms in the model. Adjustments for body mass index and period effects were done/done by including these terms as fixed effects in the linear mixed model.

Results

The majority of participants in this study were homozygous for the common allele at Lys
\(^{109}\)Arg (66%), Ser
\(^{343}\)Ser (71%) and Lys
\(^{656}\)Asn (74%), but, for Gln
\(^{223}\)Arg, heterozygotes were the most common genotype (42%; Table 1). Due to the small number of individuals homozygous for the variant alleles, we examined the percentage of change in serum leptin concentration based upon a dichotomized genotype analysis which compared those homozygous for the common allele versus those heterozygous or homozygous for the variant allele.

After adjusting for body mass index and period effect, there were no significant differences in the percent change in serum leptin concentration with zero versus one or two drinks per day for these four common polymorphisms in the leptin receptor gene [\(P \geq 0.26\), test of alcohol (three factors) by gene (two factors) based on a conditional F test; Table 2]. Power calculations were conducted based on an estimate of the within-subject variation obtained from the linear mixed model and performing a two-sample t test that compared change from zero to two drinks per day between homozygous common allele and heterozygous/homozygous variant allele groupings. The linear mixed model should provide increased power over this simple analysis. Assuming the distribution of groupings. The linear mixed model should provide increased power over this simple analysis. Assuming the distribution of polymorphisms (dichotomized genotype) in the leptin receptor gene (\[\text{All subjects} 7.3 8.9\]) were no significant differences in the percent change in serum leptin concentrations (Table 1) and an overall change of 8.9% (in geometric mean) as shown in Table 2, we were able to detect a difference between a 1% increase for the homozygous common allele and a 26% increase for the heterozygous/homozygous variant allele category with 80% power. The power calculations corresponding to the allele distribution for Ser
\(^{343}\)Ser and Lys
\(^{656}\)Asn were similar to those reported for Lys
\(^{109}\)Arg. For Gln
\(^{223}\)Arg, where the allele distribution was very different from the other polymorphisms, we were able to detect a difference between a 5% decrease for the homozygous common allele and an 18% increase for the heterozygous/homozygous variant allele category with 80% power.

Discussion

Our recent finding that moderate alcohol consumption (15-30 g of alcohol per day) increased serum leptin levels is consistent with leptin’s reported responsiveness to physiologic variation (18). This responsiveness may, in part, result from serum leptin binding to a membrane-associated leptin receptor with subsequent activation of the JAK-STAT signal transduction pathway and downstream STAT transcription factors, including several regulatory elements within the leptin promoter (18). The current study expanded our original findings to explore the leptin response to alcohol on common leptin receptor gene polymorphisms with reported physiologic significance. This includes increased adiposity (Arg
\(^{223}\) variant; refs. 19-21), higher abdominal fat in postmenopausal women (Gln
\(^{223}\)Gln homozygotes or who carry the Asn
\(^{656}\) allele; ref. 19), low body mass index and low systolic and diastolic blood pressure (Lys
\(^{109}\)Arg; ref. 22), and variation in fat mass (Ser
\(^{343}\)Ser; ref. 23) and Lys
\(^{656}\)Asn (ref. 20)). The results of this controlled intervention study found no significant modification of the serum leptin response to controlled alcohol ingestion by four common leptin receptor polymorphisms. The small number of participants limits the findings of this exploratory pilot study; however, adequate power exists for detecting a moderate (20-25%) difference between allelic categories. These results are further strengthened by the experimental design of the original intervention that maintained each participant’s body mass index through control of caloric intake and food composition intake for >6 months and represent the first report of potential effects of leptin receptor polymorphisms on serum leptin levels following alcohol consumption in a controlled feeding study.

Table 1. Distribution of four common polymorphisms of the leptin receptor gene among participants of the women's alcohol study (\(n = 53\))

| Lys
\(^{109}\)Arg | Gln
\(^{223}\)Arg | Ser
\(^{343}\)Ser | Lys
\(^{656}\)Asn |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Homozygous common allele</td>
<td>23 (66%, AA)</td>
<td>20 (38%, AA)</td>
<td>37 (71%, TT)</td>
</tr>
<tr>
<td>Heterozygous</td>
<td>12 (24%, AG)</td>
<td>22 (42%, AG)</td>
<td>23 (25%, TC)</td>
</tr>
<tr>
<td>Homozygous variant allele</td>
<td>5 (10%, GG)</td>
<td>5 (19%, GG)</td>
<td>10 (4%, CC)</td>
</tr>
<tr>
<td>Nondetectable</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2. Percent change in serum leptin concentration with zero versus one or two drinks per day by four common polymorphisms (dichotomized genotype) in the leptin receptor gene (\(n = 53\))

| No. of drinks | All | Lys
\(^{109}\)Arg | Gln
\(^{223}\)Arg | Ser
\(^{343}\)Ser | Lys
\(^{656}\)Asn |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Homozygous common allele</td>
<td>10.2</td>
<td>11.4</td>
<td>3.9</td>
<td>7.5</td>
<td>4.1</td>
</tr>
<tr>
<td>Heterozygous/homozygous variant allele</td>
<td>7.4</td>
<td>8.7</td>
<td>10.0</td>
<td>9.9</td>
<td>15.6</td>
</tr>
<tr>
<td>Interaction test</td>
<td>(P = 0.93)</td>
<td>(P = 0.75)</td>
<td>(P = 0.26)</td>
<td>(P = 0.36)</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Test of alcohol (three factors) by gene (two factors) based on a conditional F test.

Common Leptin Receptor Polymorphisms do not Modify the Effect of Alcohol Ingestion on Serum Leptin Levels in a Controlled Feeding and Alcohol Ingestion Study

Mark J. Roth, Dina N. Paltoo, Paul S. Albert, et al.

Updated version
Access the most recent version of this article at:
http://cebp.aacrjournals.org/content/14/6/1576

Cited articles
This article cites 23 articles, 3 of which you can access for free at:
http://cebp.aacrjournals.org/content/14/6/1576.full#ref-list-1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.