Urinary Metabolites of a Tobacco-Specific Lung Carcinogen in Nonsmoking Hospitality Workers

Ozlem E. Tulunay, Stephen S. Hecht, Steven G. Carmella, Yan Zhang, Charlotte Lemmonds, Sharon Murphy, and Dorothy K. Hatsukami

Abstract

Exposure of nonsmokers to environmental tobacco smoke results in increased risk for cancer and other diseases. In spite of this finding, some restaurants and bars continue to permit smoking. This study examined the uptake of nicotine and 4-(methyl nitrosamino)-1-(3-pyridyl)-1-butanol (NNK), a potent lung carcinogen, in nonsmokers who work in restaurants and bars that permitted smoking. Urine samples were collected for 24 hours on working and nonworking days and were analyzed for total NNAL [the sum of 4-(methyl nitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and its glucuronides (NNAL-Glucs)], metabolites of NNK. In addition, urine samples were analysed for total nicotine (nicotine plus nicotine glucuronide), and total cotinine (cotinine plus cotinine-N-glucuronide). The results showed significant increases in urinary levels of total NNAL, total nicotine, and total cotinine on working days compared with nonworking days. The results of this study show that smoke exposure in bars and restaurants may have important health effects on nonsmoking employees, elicited by the increase in carcinogen levels. (Cancer Epidemiol Biomarkers Prev 2005;14(5):1283–6)

Introduction

The National Toxicology Program has listed environmental tobacco smoke (ETS) exposure as a workplace carcinogen in its Tenth Annual Report on Carcinogens (1). Although in the last decade important policies have been accepted to achieve clean air in some workplaces, the service workplace has not received the needed attention. Bar and restaurant workers are exposed to ambient levels of ETS that reach levels that are four to six times higher than in other workplaces (2). Therefore, ETS in restaurants and bars presents a potential health hazard to employees and nonsmoking patrons. One way of assessing ETS exposure is through quantification of biomarkers in body fluids of exposed individuals (3). The N-nitrosamine 4-(methyl nitrosamino)-1-(3-pyridyl)-1-butanol (NNK) is tobacco specific and has been shown to be a potent lung carcinogen (4, 5). Urinary metabolites of NNK, 4-(methyl nitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and its glucuronides (NNAL-Gluc), are excellent biomarkers of NNK uptake (6-8).

In a previous study in nonsmoking casino patrons, we have shown that a 4-hour exposure to cigarette smoke resulted in significant increases in urinary levels of NNAL plus NNAL-Gluc as well as cotinine and its glucuronide, metabolites of nicotine (9). In the present study, we aimed to determine whether exposure of nonsmoking bar and restaurant workers to ETS during their shifts would result in increased levels of these biomarkers in urine.

Materials and Methods

Nonsmoking individuals who worked in restaurants and bars that permitted smoking were recruited through metropolitan newspaper advertisements and flyers. Interested potential participants were screened by telephone for eligibility using a structured interview. Participants had to be working at least a 6-hour shift in a bar or restaurant having a smoking section and be in general good health to be included in the study. Criteria for exclusion from the study included: (a) smoking even a puff in the last 2 years; (b) current use of nicotine-containing substances such as nicotine gum, lozenge, and patches or smokeless tobacco; (c) living with a smoker; and (d) significant exposure to ETS in environments other than work. Self-reported nullus of nicotine-containing products was confirmed through biochemical verification based on urinary total cotinine (<100 ng/mL) and alveolar carbon monoxide (CO < 8 ppm) levels. The Institutional Review Board of The University of Minnesota approved the study protocol. Written consent was obtained from all volunteers at the orientation visit, where detailed information was given about the study protocol.

Participants were asked to collect two 24-hour urine samples. The first 24-hour sample was collected on a non-work day. There had to be at least 48 hours between the non-work day and their last work shift. They were told to start collecting with the second void of the day and to collect until the first void of the second day. The second 24-hour sample was collected on a work day. They were asked to start collecting with the first void after they started their work shift and to collect for 24 hours afterwards. On the days of both collections, they were required to stay away from other places where they could be exposed to ETS. The subjects were asked to attend return clinic visits after each of the urine collection days. During these visits, they filled out brief questionnaires regarding the urine collection times and occupancy and smoking prevalence during their work shifts. The urine volumes were noted and they were frozen at −20°C until analysis.

We analyzed the samples for creatinine, total cotinine (cotinine plus cotinine-N-glucuronide), total nicotine (nicotine plus nicotine glucuronides), and total NNAL (NNAL plus NNAL-Gluc). Aliquots of urine (0.1-0.5 mL) were treated with 0.15 N NaOH for 30 minutes at 80°C and then analyzed for total nicotine and cotinine as previously described (9). Creatinine was determined using VITROS CREA slides (VITROS Chemical Products) by Fairview University Medical Center Diagnostic Laboratories (Minneapolis, MN).
Results

Of the 20 subjects (6 males and 14 females) who comprised the analyses, the mean age was 27 (range, 18-54 years). During the work days, the average occupancy of the bars or restaurants was 205.3 (range, 70-375); the number of patrons smoking at the peak was 3.2 (range, 2-4); and the average work time in a smoking area was 6.7 hours (range, 2.5-10.0 hours).

Table 1. Work and nonwork urinary total cotinine, total nicotine, and total NNAL levels among nonsmoking employees of bars and restaurants where smoking was allowed

<table>
<thead>
<tr>
<th>ID</th>
<th>When</th>
<th>Total cotinine</th>
<th>Total nicotine</th>
<th>Total NNAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ng/mL</td>
<td>nmol/mg creatinine</td>
<td>nmol/24 h</td>
</tr>
<tr>
<td>1</td>
<td>Nonwork</td>
<td>7</td>
<td>0.041</td>
<td>40.8</td>
</tr>
<tr>
<td>2</td>
<td>Work</td>
<td>40</td>
<td>0.180</td>
<td>255.7</td>
</tr>
<tr>
<td>3</td>
<td>Nonwork</td>
<td>3</td>
<td>0.027</td>
<td>53.7</td>
</tr>
<tr>
<td>4</td>
<td>Work</td>
<td>2</td>
<td>0.038</td>
<td>48.9</td>
</tr>
<tr>
<td>5</td>
<td>Nonwork</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>6</td>
<td>Work</td>
<td>2</td>
<td>0.010</td>
<td>20.5</td>
</tr>
<tr>
<td>7</td>
<td>Nonwork</td>
<td>9</td>
<td>0.053</td>
<td>94.6</td>
</tr>
<tr>
<td>8</td>
<td>Work</td>
<td>2</td>
<td>0.011</td>
<td>24.1</td>
</tr>
<tr>
<td>9</td>
<td>Nonwork</td>
<td>2</td>
<td>0.012</td>
<td>23.8</td>
</tr>
<tr>
<td>10</td>
<td>Work</td>
<td>1</td>
<td>0.010</td>
<td>10.2</td>
</tr>
<tr>
<td>11</td>
<td>Nonwork</td>
<td>7</td>
<td>0.045</td>
<td>80.8</td>
</tr>
<tr>
<td>12</td>
<td>Work</td>
<td>2</td>
<td>0.027</td>
<td>53.7</td>
</tr>
<tr>
<td>13</td>
<td>Nonwork</td>
<td>2</td>
<td>0.012</td>
<td>23.8</td>
</tr>
<tr>
<td>14</td>
<td>Work</td>
<td>1</td>
<td>0.010</td>
<td>10.2</td>
</tr>
<tr>
<td>15</td>
<td>Nonwork</td>
<td>7</td>
<td>0.045</td>
<td>80.8</td>
</tr>
<tr>
<td>16</td>
<td>Work</td>
<td>2</td>
<td>0.027</td>
<td>53.7</td>
</tr>
<tr>
<td>17</td>
<td>Nonwork</td>
<td>2</td>
<td>0.012</td>
<td>23.8</td>
</tr>
<tr>
<td>18</td>
<td>Work</td>
<td>1</td>
<td>0.010</td>
<td>10.2</td>
</tr>
<tr>
<td>19</td>
<td>Nonwork</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>20</td>
<td>Work</td>
<td>2</td>
<td>0.025</td>
<td>*</td>
</tr>
<tr>
<td>21</td>
<td>Nonwork</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>22</td>
<td>Work</td>
<td>2</td>
<td>0.030</td>
<td>71.6</td>
</tr>
</tbody>
</table>

NOTE: ND, below the limit of detection (detection limits: cotinine, 1 ng/mL; nicotine, 1 ng/mL; NNAL, 0.01-0.07 pmol/mL, depending on recovery).

* Twenty-four-hour urine volume was missing.

Total NNAL (pmol/mL urine) cannot be determined.

Cancer Epidemiol Biomarkers Prev 2005;14(5). May 2005
Downloaded from cebp.aacrjournals.org on June 15, 2017. © 2005 American Association for Cancer Research.
additional subjects (nos. 2, 3, and 10). Five other subjects had nondetectable levels of at least two biomarkers when not working (subjects 1, 5, 19, 20, and 21), but detectable levels when working (except subject 21 who had missing NNAL values). Except for subject 22, nicotine was detected in the urine of all subjects and one subject (no. 5) had a nondetectable urinary concentration of cotinine when working. To estimate changes in urinary levels of total cotinine, nicotine, and NNAL between nonworking and working days for all subjects, a value of half the limit of detection was used for nondetectable values for total NNAL and 1 ng/mL for total nicotine and cotinine.

Using the calculated differences between work and nonwork levels for each subject, the mean and median differences were calculated for all three compounds. This was done using either concentrations: per milliliter of urine or per milligram of creatinine or as total nanomoles of exposure marker excreted per 24 hours. In all cases, significantly higher levels were observed during work days compared with nonwork days (Table 2).

Discussion

Smoking in restaurants and bars leads to increased environmental levels of toxins (11-17). The results of this study confirm and extend the results from these other studies. This study is the first to show an increase in uptake of a potent lung carcinogen when employees are exposed to ETS in restaurants and bars. This increase was observed even though the mean number of patrons smoking was not very high. Additionally, the mean exposure value, 0.066 pmol/mL, calculated from Table 1, tended to be higher than observed in other field studies (7-9). This result probably reflects residual from the previous work shift. Our results are consistent with a meta-analysis which showed that bar and restaurant employees exposed to ETS are estimated to be at 50% higher risk for lung cancer, even when controlling for smoke exposure in the home (18). As a caveat, although NNK treatment has been found to result in tumors in animals (19), little is known about the extent of exposure that is necessary for cancer development in humans. Clearly, duration, extent of exposure, and individual susceptibility to cancer must be taken into consideration.

The findings from this study are consistent with previous ETS studies examining tobacco-specific carcinogen uptake. These studies also showed increased levels of NNAL and NNAL-GluCS in the urine of nonsmokers exposed to ETS (reviewed in ref. 20). The first study conducted in this area showed that nonsmokers exposed to high levels of ETS in a chamber had increased levels of urinary total NNAL (21). Subsequent field studies investigated NNK uptake from ETS in various settings including the home, the workplace, and public venues (6-9, 22). Only one previous field study, carried out in a gambling casino, measured total NNAL in urine before and after exposure (9). The increase after exposure was 0.018 pmol/mg creatinine, similar to that observed here.

Due to this increased exposure to tobacco smoke toxins, ETS has been estimated as the third leading preventable cause of death in the United States (23). Because ETS has been classified as carcinogenic and has been found to increase the risk not only for cancer but also for cardiovascular and pulmonary diseases, increasing numbers of worksites have instituted a smoking ban. Studies have shown that smoking bans result in reduced exposure to toxins. For example, Lambert et al. (15) have shown that nicotine concentrations in the air of nonsmoking and smoking dining rooms vary significantly, and concluded that segregating smokers in restaurants was an effective way to reduce, but not eliminate, ETS exposure of nonsmokers. Similarly, Hammond et al. (16) have emphasized the importance of banning smoking altogether, by showing that banning cigarettes lowered the nicotine concentrations to <1 µg/m³, compared with 3 to 8 µg/m³ in workplaces that allow smoking.

In addition, increased carbon monoxide levels or uptake of nicotine have been observed in employees of bars and restaurants that allow smoking compared with office workers or with employees of restaurants and bars that do not allow smoking (12, 24-30). Akbar-Khanzadeh (31) has shown that in dining rooms where smoking is permitted, the urinary nicotine and cotinine levels of restaurant employees and patrons increased significantly when compared with non-smoking workplaces or nonsmoking sections of these bars and restaurants.

Other studies have shown that, after a statewide legislation mandating smoke-free bars and taverns was enacted, bar tenders reported a substantial reduction in workplace ETS exposure (2). Bans in restaurants and bars may benefit not only the employees but also smokers. Smoking restrictions reduce the cues associated with smoking and lead to a decrease both in cigarette consumption and smoking prevalence (32-34).

In summary, employees of restaurants and bars that allow smoking are exposed to ETS and show significant uptake of a potent carcinogen. Our study results support the importance of smoking bans in all workplaces to protect public health.

Acknowledgments

We thank Shaomei Han and May-Shin Wang for outstanding technical assistance, and the restaurant and bar employees for participating in this study.
References

Urinary Metabolites of a Tobacco-Specific Lung Carcinogen in Nonsmoking Hospitality Workers

Ozlem E. Tulunay, Stephen S. Hecht, Steven G. Carmella, et al.

Updated version
Access the most recent version of this article at:
http://cebp.aacrjournals.org/content/14/5/1283

Cited articles
This article cites 30 articles, 11 of which you can access for free at:
http://cebp.aacrjournals.org/content/14/5/1283.full.html#ref-list-1

Citing articles
This article has been cited by 10 HighWire-hosted articles. Access the articles at:
/content/14/5/1283.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.