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Thinking about biochemical pathways has become an
increasingly important part of molecular epidemiology. The
field is rapidly moving from evaluation of single candidate
genes, one at a time, to consideration of entire pathways
comprising perhaps dozens of genes and their environmental
substrates, even multiple pathways that link up or compete in
complex networks. Even in its simplest rendering, for example,
dietary folate seems to be a protective factor for colorectal
cancer and is involved in at least two distinct pathways, with
relative activities regulated by the methylenetetrahydrofolate
reductase protein (among other factors): one involves DNA
methylation; the other involves disruption of pyrimadine
synthesis, leading to increased DNA damage and repair (1, 2).
Many proteins critical in folate metabolism are coded for by
genes with known polymorphisms. Alcohol and vitamins B6
and B12 also play a role in the folate pathway, and of course
other pathways involving metabolism of heterocyclic amines,
polycyclic aromatic hydrocarbons, bile acids, and nonsteroidal
anti-inflammatory drugs might compete or interact with the
folate pathways in ways we can only speculate on (3).
(Whereas epidemiologic evidence for a role of heterocyclic
amines in colorectal cancer is weak, its effect may be diluted
because we have not considered full pathways and because the
proxies for heterocyclic amines are more difficult to measure
than the proxies for polycyclic aromatic hydrocarbons, leading
to a greater degree of nondifferential misclassification of
heterocyclic amine exposure than polycyclic aromatic hydro-
carbon exposure.) To further complicate matters, there is
evidence that folate may protect against early precancerous
lesions but increase the risk of cancer in those with preexisting
lesions (4).

Beyond pathways guided by prior physiologic knowledge
and genetic variants suggested to be functionally significant,
the advent of new genomic tools now makes it possible to
characterize the full spectrum of genetic variation within
candidate genes using haplotype-based methods (5). The
technology will also soon allow genome-wide searches for
gene associations and interactions, adding powerful explor-
atory tools and a whole new level of complexity (6).

Whereas pathway-driven research is an important step
forward, thus far it has been used primarily to select promising
candidates for genetic characterization and study of plausible
gene-environment and gene-gene interactions. Analytic tools
to use this wealth of data are still in their infancy. Large-scale
case-control, cohort, and family-based studies are currently
under way that will assess many polymorphisms in scores of
genes, and in combination with environmental factors (7, 8).
Still, most reports from such studies are limited to relative risk
estimates from each factor considered one at a time or in
pairwise combinations, using very traditional epidemiologic
analysis tools. There is an obvious reason for this: even with
the largest studies, statistical power for testing even two-way
interactions is often limited and finer stratification by three or

more factors rapidly leads to inadequate sample sizes and
unstable risk estimates. Even main effects of candidate gene
associations have proven notoriously difficult to replicate (9)
and reported interactions even harder (10, 11). A recent
editorial in this journal (12) lays out criteria aimed at
‘‘improving the environment for publication of association
studies,’’ including serious consideration of biological plausi-
bility and pathways. The difficulties of multiple comparisons
that will arise in the next generation of genome-wide
association scans are daunting (6, 13, 14). Demands for very
small P values or low false discovery rates will erode power
for testing interactions further. Whereas there will always be a
place for exploratory data analysis techniques (data mining,
neural nets, classification and regression trees, multidimen-
sional reduction, clustering, etc.; refs. 15-21), our hope is that
incorporation of prior biological knowledge about pathways
will enhance the ability to detect real causal effects. To fully
realize this hope, however, we need better analysis tools that
will fully exploit this knowledge and epidemiologic study
designs that will provide the necessary data.

To avoid the ‘‘curse of dimensionality,’’ some kind of
structure is needed for any complex statistical model to be
estimable. Simply eye-balling a large table of unconstrained
relative risks for various cross-tabulations of genes and
exposures is unlikely to be very rewarding, although such
tables can be a useful starting point for exploratory analyses
and for communicating the results of a more sophisticated
model. Standard multivariate modeling approaches, such as
logistic regression, are one way of putting structure on a
model, so as to focus attention on main effects adjusted for
each other and to test interactions in a natural hierarchical
sequence [e.g., all (or a subset of ‘‘interesting’’) two-way
interactions, followed by three-way interactions that involve
combinations of significant main effects and two-way inter-
actions; ref. 22]. However, inevitably an element of subjective
choice between competing models creeps in, unless one adopts
some purely mechanical stepwise procedure, an approach that
is well known to be unlikely to uncover the true model. Hence,
the interpretation of the effects included in one’s ‘‘best’’ model
and the variances of their estimated coefficients somehow
needs to allow for this uncertainty about model choice (23).

Hierarchical mixed models, which treat the regression
coefficients as random effects with some common distribution
(24), and Bayesian model averaging across the space of all
possible models (25, 26) are two approaches that aim to account
for this problem of model uncertainty. Another approach to
putting structure on a complex system is to adopt a mechanistic
model, such as physiologically based pharmacokinetic (PBPK)
models for metabolic pathways (27, 28). These typically assume
some form of Michaelis-Menten kinetics for each step of a
pathway and use differential equations to predict the relation-
ship between substrate concentrations and the genes that
determine the various reaction rates. Such models are widely
used in toxicology (29-31), but until recently, only limited
attention has been given to allowance for interindividual
variation in the kinetic variables and their dependence on
genotypes. Although a promising approach for metabolic
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pathways, such as heterocyclic amine and polycyclic aromatic
hydrocarbon metabolism, different types of models will
doubtless be required to describe, say, DNA repair and cell
cycle control pathways, and feedback loops pose formidable
mathematical challenges.

Early applications and simulation studies of such approaches
(hierarchical Bayes and PBPK models) indicate potentially
serious problems of identifiability and lack of robustness
to modeling assumptions if the only data available are from
a traditional epidemiologic study with measurements of
exposure, genes, and outcome, together with a priori know-
ledge about the topology of the network but not about the
kinetic variables or intermediate metabolites themselves. To
move forward, it is essential that more information be
incorporated into the analysis of the available epidemiologic
data. Biomarkers offer one particularly tempting source of
additional data (32, 33). These could take a number of forms—
markers of exposure (e.g., measures of heterocyclic amine
content of various forms of cooked meats or validation studies
of questionnaire-based dietary assessments using biomarkers
of heterocyclic amines; ref. 34), circulating or excreted concen-
trations of intermediate metabolites, enzyme activity levels,
DNA adducts, damage, methylation, or even preclinical
markers of disease. Ideally, such measurements would be
obtained longitudinally and would precede the onset of
disease, requiring a cohort design. Studies of the familiality
of such markers, to allow for unmeasured genetic or
environmental determinants, or even linkage studies to localize
other genes that influence the metabolic rates could be
enlightening.

The cost and invasiveness of such studies will likely preclude
obtaining such detailed information routinely on large cohorts
or even on case-control samples, where the possibility of disease
altering the pathway variables among the cases would be a
problem. However, it would be possible to incorporate
information from external validation studies (say, longitudinal
observation of a small number of individuals in a metabolic lab),
or better yet, use of multistage sampling designs within large-
scale epidemiologic studies (35, 36). Hierarchical and PBPK
models are naturally designed to allow the incorporation of
such data in the higher levels of the model. For example,
unobserved person-specific metabolic rates in a PBPK model
can be regressed on genotype, or relative risk variables in a
hierarchical model can be regressed on functional assays or
in silico predictions of genetic effects; see Hung et al. (37) for an
example of the use of pathway indicators as prior covariates in a
hierarchical model for bladder cancer. Another study (38)
provides an example of the use of a randomized crossover
design to investigate a gene-environment interaction on an
intermediate phenotype, in this case between GST genotypes
and diesel exhaust particles on acute allergic responses, data
which might later be incorporated into the analysis of a chronic
disease endpoint using a hierarchical model.

In addition to actual measurements that could be made
within a specific epidemiologic study, we need to get smarter
about tapping into the wealth of data available in ‘‘Omics’’
databases (39) or not even catalogued but obtainable by close
collaboration with colleagues in other disciplines. Several
databases, such as the Kyoto Encyclopedia of Genes and
Genomes (www.genome.jp/kegg/), provide a wealth of
information about the structure of biochemical pathways,
including genetic determinants and the available rate varia-
bles, whereas De Roos et al. (40) have appealed for an
integrated ‘‘Exposure-Gene-Disease’’ database aimed specifi-
cally at the needs of molecular epidemiology and shown how
such data could be exploited in the hierarchical modeling
framework. Development of functional assays for specific
polymorphisms is a labor-intensive process, but once in place
could allow all polymorphisms in an interesting candidate
gene to be characterized in ways that could have some bearing

on their predicted risk (e.g., for a study of ATM variants,
expression levels, kinase activity, cell cycle checkpoint activa-
tion, and colony survival of cells heterozygous for variants
after exposure to ionizing radiation).

Computational algorithms such as PolyPhen (41), SIFT (42),
and the Grantham scale (43) have been developed to
characterize DNA sequence data in terms of evolutionary
conservation and predicted effects on protein conformation
(44); such predictions have been shown to be correlated with
relative risks across a spectrum of epidemiologic associations
(45-47). Information from animal models as well as gene
expression, proteomic, and epigenetic studies could also be
incorporated explicitly in epidemiologic models. For example,
one might use data from expression, proteomics, or siRNAs to
identify genes that may not be part of recognized pathways;
this approach is illustrated by the recent use of yeast deletion
consortium data in a genome-wide scan for genes affecting
radiosensitivity (48).

When conceptualizing a study, we frequently think we
know a lot about the structure of a pathway, but as we get
deeper and deeper into the biological literature they invariably
become more complex and uncertain. Whereas we would like
to be able to exploit what we think we know from other
sources in developing models that can be applied to the
epidemiologic data at hand, we do not want the results to be
foregone conclusions, driven more by our assumptions than by
the data itself. Statistical methods such as Bayes factors (49) are
available to quantify the incremental contribution of the data
beyond the assumed structure of an analysis, but these need to
be nested within a sufficiently broad class of models to allow
for the possibility that our prior knowledge is wrong, without
at the same time being so flexible as to completely defeat the
purpose of trying to use our biological understanding to give
some structure to our analyses. One of the aims of the field of
systems biology is to ‘‘reverse engineer’’ a biological system to
infer from observations the underlying structure, hardware,
and software a cell uses to achieve some function (39, 50, 51).
Techniques such as Bayesian network analysis have been
useful for this purpose (52). This reverse engineering is
precisely the aim of molecular epidemiology, at the opposite
extreme of complexity—populations rather than cells—so we
would do well to incorporate some of the thinking that systems
biologists and other disciplines use for this purpose.

In summary, pathway-driven thinking is potentially a major
step forward for the field of molecular epidemiology, by
providing a unifying framework for the investigation of
multiple genes and environmental factors that act in concert.
This hope will only be realized, however, by advances in study
design and statistical analysis that can integrate all these
factors into a single model, incorporating prior knowledge
from such disciplines as molecular genetics, biochemistry,
toxicology, and systems biology. The rapid accumulation of
knowledge from such fields into Omics databases and the
potential to measure intermediate biomarkers provide exciting
opportunities to support this development.
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