Null Results in Brief

Cyclooxygenase 2 Polymorphism (Val511Ala), Nonsteroidal Anti-inflammatory Drug Use and Breast Cancer in African American Women

Patricia G. Moorman,1 John Sesay,2 Veronica Nwosu,2 Janet Grubber Kane,1 Allan René de Cotret,3 Kendra Worley,3 and Robert Millikan2

1Cancer Prevention, Detection and Control Research Program, Department of Community and Family Medicine, Duke University Medical Center; 2Department of Biology, North Carolina Central University, Durham, North Carolina; and 3Lineberger Comprehensive Cancer Center, Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina

Introduction

Nonsteroidal anti-inflammatory drugs (NSAID) have been associated with reduced risks of colon cancer, breast cancer, and other cancer sites (1, 2). We previously reported a strong inverse relationship between NSAID use and breast cancer in a North Carolina study, with a suggestion of stronger associations among African Americans (3). One hypothesized mechanism for the reduction in cancer risk by NSAIDs is the inhibition of cyclooxygenase 2 (COX2), which is overexpressed in various cancer types and is thought to stimulate angiogenesis and inhibit apoptosis (1).

A polymorphism in the COX2 gene [valine to alanine at residue 511 (Val511Ala)] has been identified in African Americans that results in a conformation change in the enzyme near its active site, and it has been hypothesized this polymorphism could modify biochemical function or change the response to NSAIDs (4, 5). In a recent paper, carriers of this polymorphism seemed to be at reduced risk for colon adenomas [odds ratio (OR), 0.56; 95% confidence interval (95% CI), 0.25-1.27] and colon cancer (OR, 0.67; 95% CI, 0.28-1.56; ref. 5). In this report, we describe the relationship between the COX2 Val511Ala polymorphism, NSAIDs, and breast cancer in a case-control study in North Carolina.

Materials and Methods

These analyses were based on 1,441 African American participants in the Carolina Breast Cancer Study, a population-based, case-control study conducted between 1993 to 2001 (3, 6). Cases were 20 to 74 years old and had either invasive breast cancer or carcinoma in situ. Control women were selected from Division of Motor Vehicle and Health Care Financing Administration lists and matched by race and age to cases.

Genotyping was done according to previously described procedures using the Taqman system (6). The Ala511 (C) allele-specific probe was labeled on the 5′ end with the VIC reporter dye and contained the nucleotide sequence 5′-TGCTCCAgCTTCTAC-3′ with a melting temperature of 68.5°C and a G-C content of 53.3%. The Val511 (T) allele-specific probe was labeled on the 5′ end with the 6-FAM reporter dye and contained the nucleotide sequence 5′-TGCTCCAaCTTCTAC-3′ with a melting temperature of 67.5°C and a G-C content of 46.7%. Both probes were minor groove binding and used a nonfluorescing quencher on the 3′ end. Forward and reverse primers were used to amplify the region surrounding the Val511Ala polymorphism. The nucleotide sequences for the forward and reverse primers were 5′-AGAAACGCCTCGCGCAGATG-3′ and 5′-GCGGAGGAAACATATAACATTACGCATAA-3′, respectively.

Logistic regression analyses were done using the GENMOD procedure in SAS (Cary, NC). We calculated ORs and 95% CIs to evaluate the association between breast cancer and the Val511Ala polymorphism and the joint effects of NSAIDs and genotype.

Results

Genotyping results were available for 763 cases (673 invasive and 90 in situ) and 678 controls. The frequency of the Ala allele was 4.3% in cases and 4.0% in controls (Table 1), which is very similar to the allele frequency of 4.5% reported by Lin et al. (5). There were no significant departures from Hardy-Weinberg equilibrium among either cases (P = 0.16) or controls (P = 0.36). Few women were homozygous for the Ala allele; therefore ORs for breast cancer were calculated comparing carriers of any Ala allele (Ala/Ala or Ala/Val) to individuals who were homozygous for the Val allele. There were no significant genotype differences between cases and controls with an overall OR associated with carrying an Ala allele of 1.2 (95% CI, 0.8-1.7). The ORs for invasive cases and in situ cases were 1.1 (95% CI, 0.7-1.6) and 1.6 (95% CI, 0.4-7.0), respectively. We also did not find any statistically significant associations when stratifying by menopausal status or estrogen receptor status (data not shown).

Using data from 462 cases and 367 controls for whom information on NSAID use was available (phase II participants), we evaluated the joint effect of genotype and NSAIDs using a composite variable. Women with the Val/Val genotype who reported no use of NSAIDs were the reference group and ORs were calculated for each of the other genotype-NSAID categories. As compared with the reference category, we observed ORs <1 for women who reported any NSAID use,
Although a previous report from a study of colon cancer, it was reasonable to examine its association with breast and the previous work suggesting an association with colon conformational change associated with this polymorphism only one polymorphism in power to detect an OR of 0.7. A limitation is that we examined colon cancer. NSAID use have tended to be weaker than those reported for cancer and the magnitude of the associations with aspirin/aspirin and other NSAIDs, our results showed no association between this polymorphism and breast cancer. We also found no evidence suggesting that the Val<sup>511</sup>Ala polymorphism modified the relationship between NSAID use and breast cancer; ORs <1 were observed for NSAID users regardless of genotype (Table 2). ORs ranged from 0.3 to 0.7, with 95% CIs that overlapped considerably. The OR for Ala carriers who were nonusers of NSAIDs was 0.2; however, there were only two controls and one case in this category, leading to an unstable estimate of the effect of the Ala allele alone.

Discussion

Although a previous report from a study of colon cancer suggested that the Val<sup>511</sup>Ala polymorphism had an effect on colon cancer risk comparable in magnitude (OR ≈ 0.6) to the protective effect that has been reported consistently for aspirin and other NSAIDs, our results showed no association between this polymorphism and breast cancer. Although most epidemiologic studies (3, 7-10) have reported inverse associations between NSAID use and breast cancer, the multiple lines of evidence linking COX2 to breast cancer risk suggest that further research is warranted to gain insight into possible mechanisms for the chemopreventive effects of NSAIDs.

Acknowledgments

We thank Jon Player, Allison Eaton, Scott Winkel, Beri Massa, Rachel Holston, Patti Williams (University of North Carolina High Throughput Genotyping Core Laboratory) and Daynise Skeen (University of North Carolina Specialized Programs of Research Excellence Tissue Procurement Facility) for technical assistance.

Table 1. Allele and genotype frequencies for COX2 among African American breast cancer cases (invasive and carcinoma in situ) and controls, the Carolina Breast Cancer Study

<table>
<thead>
<tr>
<th>COX2 allele frequencies</th>
<th>Cases, n (%)</th>
<th>Controls, n (%)</th>
<th>OR* (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala</td>
<td>65 (4.3)</td>
<td>54 (4.0)</td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>1,461 (95.7)</td>
<td>1,302 (96.0)</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>10</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COX2 genotype frequencies</th>
<th>Cases (n)</th>
<th>Controls (n)</th>
<th>OR* (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala/Ala or Val/Ala</td>
<td>65 (8.5)</td>
<td>50 (7.4)</td>
<td>1.2 (0.8-1.7)</td>
</tr>
<tr>
<td>Val/Val</td>
<td>698 (91.5)</td>
<td>626 (92.3)</td>
<td>1.0 (reference)</td>
</tr>
<tr>
<td>Missing</td>
<td>5</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

*Adjusted for age and offset term used to oversample younger women and African American women.

Table 2. ORs and 95% CIs for the joint effects of COX2 genotype and NSAID use on breast cancer (invasive and carcinoma in situ) among African American women, the Carolina Breast Cancer Study

<table>
<thead>
<tr>
<th>NSAID use category</th>
<th>COX2 genotype</th>
<th>OR* (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala/Ala or Val/Ala</td>
<td>Cases (n)</td>
<td>Controls (n)</td>
</tr>
<tr>
<td>Never</td>
<td>1/2</td>
<td>2/3</td>
</tr>
<tr>
<td>Occasional</td>
<td>1/1</td>
<td>0/1</td>
</tr>
<tr>
<td>Regular</td>
<td>1/1</td>
<td>0/0</td>
</tr>
</tbody>
</table>

Discussions

cancer. Despite the lack of association between the Val<sup>511</sup>Ala variant and breast cancer, the multiple lines of evidence linking COX2 to breast cancer risk suggest that further research is warranted to gain insight into possible mechanisms for the chemopreventive effects of NSAIDs.

References

Cyclooxygenase 2 Polymorphism (Val^{511} Ala), Nonsteroidal Anti-inflammatory Drug Use and Breast Cancer in African American Women

Patricia G. Moorman, John Sesay, Veronica Nwosu, et al.


Updated version
Access the most recent version of this article at:
http://cebp.aacrjournals.org/content/14/12/3013

Cited articles
This article cites 9 articles, 4 of which you can access for free at:
http://cebp.aacrjournals.org/content/14/12/3013.full#ref-list-1

Citing articles
This article has been cited by 1 HighWire-hosted articles. Access the articles at:
http://cebp.aacrjournals.org/content/14/12/3013.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.