Association of GSTM1, GSTT1, and GSTP1 Gene Polymorphisms with the Risk of Prostate Cancer: A Meta-analysis

Christos Ntais,1 Anastasia Polycarpou,1 and John P.A. Ioannidis1,2,3
1Clinical and Molecular Epidemiology Unit, Department of Hygiene and Epidemiology, University of Ioannina School of Medicine; 2Biomedical Research Institute, Foundation for Research and Technology–Hellas, Ioannina, Greece; 3Institute for Clinical Research and Health Policy Studies, Department of Medicine, Tufts–New England Medical Center, Tufts University School of Medicine, Boston, Massachusetts

Abstract

The glutathione S-transferase (GST) gene superfamily encodes for enzymes involved in conjugation of electrophilic compounds to glutathione. Several polymorphisms in the GST genes have been implicated as risk factors for prostate cancer. We did a meta-analysis of 11 studies with GSTM1 genotyping (2,063 prostate cancer cases and 2,625 controls), 10 studies with GSTT1 genotyping (1,965 cases and 2,554 controls), and 12 studies with GSTP1 genotyping (2,528 cases and 3,076 controls). The random effects odds ratio was 1.08 [95% confidence interval (95% CI), 0.93-1.25, no significant between-study heterogeneity] for the GSTM1 null versus nondeleted genotype and 0.90 (95% CI, 0.73-1.12; P = 0.03 for heterogeneity) for the GSTT1 null versus nondeleted genotype. Overall, the random effects odds ratio was 1.05 (95% CI, 0.90-1.21; P < 0.01 for heterogeneity) for the GSTP1-Val versus GSTP1-Ile allele. For all three polymorphisms, there was a trend for the presence of an association in the earliest published studies, but this did not seem to be validated in subsequent research. For GSTT1, larger studies gave different results than smaller ones. The meta-analysis showed that these three polymorphisms are unlikely to be major determinants of susceptibility to prostate cancer on a wide population basis. (Cancer Epidemiol Biomarkers Prev 2005;14(1):176–81)

Introduction

The glutathione S-transferase (GST) gene superfamily consists of four gene classes (A, M, T, and P) encoding for enzymes which catalyze the conjugation of electrophilic compounds to glutathione (1). These enzymes are also believed to play a crucial role in the protection of DNA from oxidative damage (2). GSTM1 and GSTT1 have different substrate specificities in detoxification of carcinogenic polycyclic aromatic hydrocarbons (1). Moreover, GSTT1 may also catalyze the activation of certain xenobiotics to genotoxic metabolites, such as dichloromethane and other halogenated alkanes (3, 4); thus, the net effect (protection or susceptibility) in relationship to carcinogenesis, if any, is difficult to predict. GSTM1 activity is absent in ~40% to 60% of the Caucasian population as a result of the inheritance of two null alleles (5). Similarly, GSTT1 activity is absent (homozygous gene deletion) in ~20% to 30% of Caucasians (5). GSTP1 is a major enzyme involved in the inactivation of cigarette smoke carcinogens, such as benzo[a]pyrene diol epoxide, and other toxic constituents, such as acrolein (1). GSTP1 expression has been studied in preneoplastic and neoplastic prostate lesions (6-9). An A313G transition in exon 5 of the GSTP1 gene, which replaces isoleucine at codon 105 with valine (I105V) within the active site of the enzyme, has been identified (10). This substitution is associated with reduced enzymatic activity for certain substrates and altered thermostability (11, 12).

Molecular epidemiologic studies have presented inconclusive results concerning a potential role of the GSTM1 (13-23), GSTT1 (15-24), and GSTP1 (10, 15-21, 25-28) polymorphisms in prostate cancer susceptibility. Single studies may have been underpowered to detect modest effects. Given the amount of accumulated data, a quantitative synthesis of the evidence and analysis of the between-study heterogeneity was deemed important to perform.

Materials and Methods

Identification and Eligibility of Relevant Studies and Data Extraction. We considered all studies that examined the association of the GSTM1, GSTT1, and GSTP1 polymorphisms with prostate cancer. Sources included MEDLINE, EMBASE, and the HuGENet database (last search update 4/2004). The search strategy was based on combinations of “prostate cancer,” “glutathione S-transferase,” “GST,” “polymorphism,” “allele,” and “genetics.” References of retrieved articles were also screened.

The meta-analysis was designed on the same principles as previous meta-analyses of candidate genetic risk factors for prostate cancer done by our team (29-31). Methodology is given in detail in previous publications (29-31). In brief, studies of unrelated prostate cancer cases and prostate cancer-free controls [with or without benign prostatic hyperplasia (BPH)] were eligible. Cases with prostate cancer were eligible regardless of whether they had a first-degree relative with prostate cancer or not. Among overlapping reports, we retained the one with largest sample size.

Meta-analysis. The analysis for GSTM1 and GSTT1 polymorphisms compared cases against controls for the contrast of the null (homozygous deletion of the gene) versus the nondeleted genotype (heterozygous or homozygous presence of the gene), as originally proposed (15). The analysis for the GSTP1 polymorphism was based on the contrast of alleles. The odds ratio (OR) was used as the metric of choice. For each genetic contrast, we estimated the between-study heterogeneity across all eligible comparisons using the χ2-based Q statistic.
Data were combined using both fixed effects (Mantel-Haenszel) and random effects (DerSimonian and Laird) models (32). Random effects incorporate an estimate of the between-study variance and provide wider 95% confidence intervals (95% CI), when the results of the constituent studies differ among themselves. Random effects are reported unless stated otherwise. Subgroup analyses estimated race-specific ORs.

Table 1. Characteristics of studies included in the meta-analyses

<table>
<thead>
<tr>
<th>First author, year</th>
<th>Country</th>
<th>Selection/characteristics of cases and controls (age range [mean])</th>
<th>Racial descent</th>
<th>Eligible subjects*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harries, 1997</td>
<td>United Kingdom</td>
<td>Not clarified (62-88 [70.4])</td>
<td>Caucasian</td>
<td>36 155</td>
</tr>
<tr>
<td>Murata, 1998</td>
<td>Japan</td>
<td>Histologically documented cancer [73]</td>
<td>Asian</td>
<td>115 204</td>
</tr>
<tr>
<td>Wadelius, 1999</td>
<td>Sweden</td>
<td>Not clarified. Family history in 12.4% [71]</td>
<td>Caucasian</td>
<td>178 160</td>
</tr>
<tr>
<td>Autrup, 1999</td>
<td>Denmark</td>
<td>Histologically documented cancer (43-90 [69.4])</td>
<td>Caucasian</td>
<td>153 288</td>
</tr>
<tr>
<td>Kelada, 2000</td>
<td>United States</td>
<td>Review of medical records. Men were excluded if they reported exposure to finasteride, were diagnosed more than 12 months before joining the study, or had cancer at any site (41-80 [61.2])</td>
<td>Caucasian'</td>
<td>276 499</td>
</tr>
<tr>
<td>Steinhoff, 2000</td>
<td>Germany</td>
<td>Histologically documented cancer [65]</td>
<td>Caucasian</td>
<td>91 127</td>
</tr>
<tr>
<td>Shepard, 2000</td>
<td>United States</td>
<td>Review of medical records and pathology reports (40-84)</td>
<td>Caucasian</td>
<td>590 803</td>
</tr>
<tr>
<td>Gsur, 2001</td>
<td>Austria</td>
<td>Histologically documented cancer by TRUS-guided biopsy after a suspicious finding on DRE, elevated serum PSA or both [66]</td>
<td>Caucasian</td>
<td>166 166</td>
</tr>
<tr>
<td>Kote-Jarai, 2001</td>
<td>United Kingdom</td>
<td>Histologically documented cancer</td>
<td>Caucasian</td>
<td>275 280</td>
</tr>
<tr>
<td>Murata, 2001</td>
<td>Japan</td>
<td>Histologically documented cancer Serological, physical and biopsy examinations [73]</td>
<td>Asian</td>
<td>115 200</td>
</tr>
<tr>
<td>Luscombe, 2002</td>
<td>United Kingdom</td>
<td>Histologically documented cancer (n = 190); clinically malignant prostate on DRE, positive bone scan and serum PSA ≥ 20 ng/ml (n = 20) [70.6]</td>
<td>Caucasian</td>
<td>210 155</td>
</tr>
<tr>
<td>Jeronimo, 2002</td>
<td>Portugal</td>
<td>Histologically documented cancer (48-74)</td>
<td>Caucasian</td>
<td>105 141</td>
</tr>
<tr>
<td>Kidd, 2003</td>
<td>United States</td>
<td>Review of medical records and pathology reports</td>
<td>Caucasian</td>
<td>206 194</td>
</tr>
<tr>
<td>Acevedo, 2003</td>
<td>Chile</td>
<td>Histologically documented cancer by TRUS-guided biopsy after a suspicious finding on DRE, elevated serum PSA or both [63.4]</td>
<td>Caucasian</td>
<td>102 128</td>
</tr>
<tr>
<td>Nakazato, 2003</td>
<td>Japan</td>
<td>Histologically documented cancer and prostate cancer in first-degree relatives (40-88 [70.6])</td>
<td>Asian</td>
<td>81 105</td>
</tr>
</tbody>
</table>

(Continued on the following page)
Table 1. Characteristics of studies included in the meta-analyses (Cont’d)

<table>
<thead>
<tr>
<th>First author, year</th>
<th>Country</th>
<th>Selection CHARACTERISTICS OF CASES AND CONTROLS (AGE RANGE [MEAN])</th>
<th>Prostate cancer</th>
<th>Controls</th>
<th>Racial descent</th>
<th>Eligible subjects*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nam, 2003</td>
<td>Canada</td>
<td>Histologically documented cancer by TRUS-guided biopsy or an abnormal DRE or elevated serum PSA. Family history in 13.7% [666]</td>
<td>No invasive cancer in 1 (n = 292), 2 (n = 200), or more (n = 56) biopsy sessions after abnormal DRE or elevated serum PSA. Normal prostate tissue (n = 39), inflammation/BPH (n = 406), and PIN (n = 103) [641].</td>
<td>Caucasian</td>
<td>483</td>
<td>548</td>
</tr>
<tr>
<td>Medeiros, 2004</td>
<td>Portugal</td>
<td>Histologically documented cancer (45-85)</td>
<td>Not elevated serum PSA (42-84)</td>
<td>Caucasian</td>
<td>150</td>
<td>185</td>
</tr>
</tbody>
</table>

Abbreviations: DRE, digital rectal examination; PIN, prostatic intraepithelial neoplasia; PSA, prostate-specific antigen; TRUS, transrectal ultrasound.

*All eligible subjects were genotyped with the exception of 7 cancer patients and 12 controls (GSTP1), 20 cancer patients and 30 controls (GSTT1) in Kelada et al. (22), 2 cancer patients and 10 controls (GSTM1), 2 cancer patients and 2 controls (GSTT1), 2 cancer patients and 7 controls (GSTP1) in Kote-Jarai et al. (18), 1 cancer patient and 1 control (GSTP1) in Luscombe et al. (25), 6 cancer patients and 6 controls (GSTM1), 4 cancer patients and 5 controls (GSTT1), 36 cancer patients and 26 controls (GSTP1) in Kidd et al. (21), and 8 cancer patients and 2 controls (GSTM1), 5 cancer patients and one control (GSTT1) in Medeiros et al. (23).

Cumulative meta-analysis (33) and recursive cumulative meta-analysis (34, 35) evaluated whether the summary ORs changed over time as data accumulated (36). Inverted funnel plots and the Begg-Mazumdar diagnostic (nonparametric r correlation coefficient; ref. 37) evaluated whether the magnitude of the observed association was related to each study’s variance (38). Finally, we evaluated whether the summary results were different when the analyses were limited to studies that confirmed histologically all prostate cancer cases and specifically screened all controls to rule out prostate cancer.

Analyses were conducted in SPSS 11.0 (SPSS, Inc., Chicago, IL), StatXact (Cytel Inc., Boston, MA), and MetaAnalyst (Joseph Lau, Boston, MA). All Ps are two-tailed.

Results

Eligible Studies

Excluding overlapping data, we identified 17 eligible reports (10, 13-28) with 11, 10, and 12 studies on GSTM1 (13-23), GSTT1 (15-24), and GSTP1 (10, 15-21, 25-28), respectively. There was a considerable diversity of ethnic groups. Twelve reports (13-20, 23-26) selected prostate cancer patients based on a histologic diagnosis from biopsy or prostatectomy, whereas the other five (10, 21, 22, 27, 28) did not clarify the exact diagnostic criteria. Three reports (17, 19, 27) commented positive family history of prostate cancer in 12.4%, 13.7%, and 100% of patients, respectively, whereas the remaining did not comment on family history. Controls did not have a clinical diagnosis of prostate cancer at study entry, but the amount of additional screening to exclude prostate cancer differed substantially across studies (Table 1).

With four exceptions (14-16, 25) where the mean age of controls and cases differed by ≥3 years, the reported mean or median age of cases and controls was very similar (difference, ≤2 years) and specific matching for age was described in six studies (20-23, 27, 28). One study also matched for smoking status (28). Only three reports (17, 20, 28) mentioned specifically blinding of the personnel who did the genotyping. All studies used PCR. The distribution of genotypes in control groups was consistent with Hardy-Weinberg equilibrium for the GSTP1 polymorphism in all studies.

Meta-analyses Databases

GSTM1. The eligible studies included 2,098 patients with prostate cancer and 2,726 controls of whom 2,063 and 2,625, respectively, had genotype data. The null genotype was similarly common among controls of Caucasian descent (48%; 95% CI, 45-51) and Asian descent (45%; 95% CI, 39-51). In controls of Caucasian descent, prevalence was relatively similar in most countries (54% in Denmark, 53% in the United States, 50% in the United Kingdom and Portugal, 49% in Austria, and 45% in Germany), but it was surprisingly low in a Chilean study (23%).

GSTT1. The eligible studies included 1,996 patients with prostate cancer and 2,592 controls of whom 1,965 and 2,554, respectively, had genotype data. The overall prevalence of the null genotype was 19% (95% CI, 17-21) and 49% (95% CI, 43-55) in control subjects of Caucasian and Asian descent, respectively. The prevalence rates of the null genotype across the controls of Caucasian descent were 24% in Portugal and United Kingdom, 20% in Austria, 15% in Denmark and the United States, and 13% in Germany.

GSTP1. The eligible studies included 2,574 patients with prostate cancer and 3,122 controls of whom 2,528 and 3,076, respectively, had genotype data. The prevalence of the Val allele was 32% (95% CI, 31-33) and 14% (95% CI, 9-19) in control subjects of Caucasian and Asian descent, respectively. The prevalence rates of the Val allele across the control subjects of Caucasian descent were 38% in Austria; 33% in Portugal; 33% in Sweden, Denmark, and the United States; 30% in the United Kingdom; and 27% in Germany. Overall, the prevalence of Val/Val homozygosity was 11% and 0% in control subjects of Caucasian and Asian descent, respectively. The respective prevalence rates of Ile/Val heterozygosity were 43% and 28%.

Quantitative Synthesis

GSTM1. There was no evidence that the null genotype modified the risk of prostate cancer (Fig. 1A). The summary OR was 1.08 (95% CI, 0.93-1.25, P = 0.34), without statistically significant between-study heterogeneity. No association was observed in subjects of Caucasian (OR, 1.11; P = 0.39, P = 0.04 for between-study heterogeneity) and Asian descent (OR, 1.11; P = 0.61, no significant between-study heterogeneity).
GSTT1. The contrast of genotypes did not suggest any strong genetic effect (Fig. 1B). The summary OR was 0.90 (95% CI, 0.73-1.12; \(P = 0.34 \)) and there was statistically significant between-study heterogeneity (\(\chi^2 = 0.03 \) for heterogeneity). We also found no evidence of an association in subjects of Caucasian descent (OR, 1.04; \(P = 0.78 \), no significant between-study heterogeneity) and Asian descent (OR, 0.91; \(P = 0.80, P = 0.05 \) for between-study heterogeneity).

GSTP1. There was no evidence that the Val allele modified the risk of prostate cancer (Fig. 1C). The summary OR was 1.05 (95% CI, 0.90-1.21; \(P = 0.54 \)) and there was highly significant heterogeneity among the 11 study comparisons (\(\chi^2 < 0.01 \) for heterogeneity). No association was observed in subjects of Caucasian descent (OR, 1.02; \(P = 0.81, P < 0.01 \) for between-study heterogeneity) and there was only one study with subjects of Asian descent (OR, 1.25; \(P = 0.44 \)).

Bias Diagnostics

GSTM1. The magnitude of the summary OR had not been stable over time and it had changed considerably per year with an apparent continuous dissipation of the postulated effect (by random effects, summary OR for null versus nondeleted genotype was 1.32 at the end of 1998, 1.30 in 1999, 1.15 in 2000, 1.13 in 2001, 1.07 in 2003, and 1.08 in 2004). The effect size was not related to study variance (\(P = 0.39 \)). Analyses limited to studies with rigorous selection of cases and controls yielded similar results [9 comparisons (3,625 subjects); OR, 1.14; 95% CI, 1.00-1.30, no significant between-study heterogeneity].

 GSTT1. The magnitude of the summary OR continuously diminished over time (by random effects, summary OR for null versus nondeleted genotype was 1.30 at the end of 1999, 1.15 in 2000, 0.94 in 2001, 0.91 in 2003, and 0.90 in 2004). Moreover, there was evidence that larger studies showed different results than smaller studies (\(P = 0.09 \) for the tau correlation between the natural logarithm of the OR and the study variance). Analyses limited to studies with rigorous selection of cases and controls excluded any effect [8 comparisons (3,403 subjects); OR, 0.98; 95% CI, 0.77-1.25; \(P = 0.05 \) for between-study heterogeneity].

GSTP1. The magnitude of the summary OR had not been stable over time and it had changed considerably after the first year (by random effects, summary OR for Val versus Ile was 1.56 at the end of 1997, 1.11 in 1999, 0.99 in 2000, 1.00 in 2001, 1.02 in 2002, and 1.05 in 2003). The effect size was not related to study variance (\(P = 0.31 \)). Analyses limited to studies with rigorous selection of cases and controls yielded similar results [8 comparisons (6,726 alleles); OR, 1.04; 95% CI, 0.86-1.25; \(P < 0.01 \) for heterogeneity].

Figure 1. A. Effect of the GSTM1 null versus nondeleted genotype on the risk of prostate cancer. Each comparison is presented by the name of the first author and the year of publication. As, subjects of Asian descent. The point estimate of the OR and the accompanying 95% CI for each comparison are shown. Also shown is the summary random effects estimate for the comparison along with the respective 95% CI. Values >1, an increased risk for prostate cancer with the null genotype. B. Effect of the GSTT1 null versus nondeleted genotype on the risk of prostate cancer. Values >1, an increased risk for prostate cancer with the null genotype. Otherwise, figure set up as per Fig. 1A. C. Effect of the GSTP1-Val versus GSTP1-Ile allele on the risk of prostate cancer. Values >1, an increased risk for prostate cancer with the Val allele. Otherwise, figure set up as per Fig. 1A.
Discussion

The current evidence does not show any increased risk for prostate cancer conferred by these three common GST polymorphisms and the 95% CIs are narrow enough to exclude a large genetic effect. Whereas a trend for potential genetic effects was suggested in early data for all three polymorphisms, this was not validated with subsequent research. Postulated genetic associations for prostate cancer need to be carefully validated across several studies, because early and small genetic association studies may come up with spurious findings (36, 38-40).

The biochemical evidence for a putative relationship of these GST polymorphisms with prostate cancer is also equivocal. These enzymes may regulate pathways that prevent damage from several carcinogens (1-4). However, it is unlikely that specific environmental carcinogens whose effect might also be modifiable by GST genotype have a high attributable fraction for prostate cancer. For GSTT1 in particular, protective and susceptibility effects to cancer may counterbalance each other. In addition to metabolism of chemical carcinogens, GST enzymes metabolize steroid hormones, compounds found in the diet, and other agents potentially involved in prostate carcinogenesis. Furthermore, GST enzymes are involved in the intracellular transport of steroid hormones (41) and the isomerization of androst-5-ene-3,17-dione to androst-4-ene-3,17-dione, the immediate precursor of testosterone (1). However, the exact role of steroid hormones in the pathogenesis of prostate cancer has been a contentious issue (42, 43). Polymorphisms in genes coding for enzymes of the androgen biosynthesis and metabolism pathway have also been postulated as prostate cancer determinants (44, 45), but meta-analyses have yielded mostly negative results (29, 30).

The GST polymorphisms have also been studied extensively in terms of susceptibility for other malignancies. Previous meta-analyses on these polymorphisms yielded negative results for breast (46) and colon cancer (47), whereas others have suggested the possible presence of modest associations in terms of susceptibility for other malignancies. Previous research. Postulated genetic associations for prostate cancer determinants (44, 45), but meta-analyses have yielded mostly negative results (29, 30).

The GST polymorphisms have also been studied extensively in terms of susceptibility for other malignancies. Previous meta-analyses on these polymorphisms yielded negative results for breast (46) and colon cancer (47), whereas others have suggested the possible presence of modest associations in terms of susceptibility for other malignancies. Previous research. Postulated genetic associations for prostate cancer determinants (44, 45), but meta-analyses have yielded mostly negative results (29, 30).

Some analytic issues should also be considered. First, some nondifferential misclassification bias is possible. Most studies could not exclude latent prostate cancer cases in the control group. Furthermore, control groups included a large, often unknown proportion of subjects with BPH. BPH may be also affected by these same polymorphisms, but susceptibility to prostate enlargement is a different issue than susceptibility to cancer. We could not address whether these GST polymorphisms may have an effect on the clinical behavior of prostate cancer or other clinicopathologic attributes. The meta-analysis cannot exclude the possibility that other polymorphisms in GST genes may still be useful to pursue. Moreover, we could not address gene-gene and gene-environmental interactions. The latter may be important for genes that code proteins with detoxifying functions but would require detailed information on exposures to various potential carcinogens and individual-level data (51) and would be most meaningful only for common exposures that are found to be strong risk factors for the disease.

References

4. Sherratt PJ, Pulford DJ, Harrison DJ, Green T, Hayes JD. Evidence that human class Theta glutathione S-transferase T1-1 can catalyse the activation of dichloroethane, a liver and lung carcinogen in the mouse. Comparison of the tissue distribution of GST T1-1 with that of class Alpha, Mu and Pi GST in human. Biochem J 1997;326:837–46.

Association of $GSTM1$, $GSTT1$, and $GSTP1$ Gene Polymorphisms with the Risk of Prostate Cancer: A Meta-analysis

Christos Ntais, Anastasia Polycarpou and John P.A. Ioannidis

Updated version: Access the most recent version of this article at: http://cebp.aacrjournals.org/content/14/1/176

Cited articles: This article cites 50 articles, 14 of which you can access for free at: http://cebp.aacrjournals.org/content/14/1/176.full#ref-list-1

Citing articles: This article has been cited by 2 HighWire-hosted articles. Access the articles at: http://cebp.aacrjournals.org/content/14/1/176.full#related-urls

E-mail alerts: Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions: To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions: To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.