Patterns of Alcohol Consumption and Breast Cancer Risk in the California Teachers Study Cohort

Pamela L. Horn-Ross,1 Alison J. Canchola,1 Dee W. West,1 Susan L. Stewart,1 Leslie Bernstein,2 Dennis Deapen,2 Rich Pinder,2 Ronald K. Ross,2 Hoda Anton-Culver,3 David Peel,3 Argyrious Ziogas,3 Peggy Reynolds,4 and William Wright5

1Northern California Cancer Center, Union City, CA; 2University of Southern California, Keck School of Medicine, Los Angeles, CA; 3University of California, Irvine, CA; California Department of Health Services, Environmental Health Investigations Branch, Oakland, CA; and 4California Department of Health Services, Cancer Surveillance Section, Sacramento, CA

Abstract

Alcohol consumption of approximately two drinks or more per day has been associated with elevated breast cancer risk in the California Teachers Study cohort as well as in many other populations. The objective of this analysis is to examine effects of age at drinking and drinking patterns and to identify effect modifiers. Of the 103,460 at-risk cohort members, age <85, who resided in California and completed the baseline alcohol assessment, 1,742 were diagnosed with invasive breast cancer after joining the cohort and before January 2001. Incident breast cancers were identified through the California Cancer Registry and follow-up for death and confirmation of continued California residence used various sources. Multivariate Cox proportional hazards regression models were used to estimate relative risks (RRs). Elevated breast cancer risk was most evident for recent drinking [RR = 1.28, 95% confidence interval (CI): 1.06–1.54 for ≥20 g/day versus nondrinkers], with no clear pattern for consumption during earlier periods of life. This elevation in risk was 32% among postmenopausal women (95% CI: 1.06–1.63) and 21% among pre/perimenopausal women (95% CI: 0.76–1.92). Highest risks associated with heavy alcohol consumption were observed among postmenopausal women with a history of biopsy-diagnosed benign breast disease (RR = 1.97, 95% CI: 1.39–2.79 compared to nondrinkers without benign breast disease) or who had used combination hormone replacement therapy (HRT) (RR = 2.24, 95% CI: 1.59–3.14 compared to nondrinkers who never used HRT). Recent alcohol consumption equivalent to two or more drinks per day increases the risk of invasive breast cancer, with the greatest RRs observed among heavy drinkers who are also postmenopausal and have a history of benign breast disease or who use HRT. (Cancer Epidemiol Biomarkers Prev 2004;13(3):405–411)

Introduction

The overall effects of alcohol consumption on breast cancer risk have been fairly well established. Most studies, including both case-control and cohort studies, have found that consuming two or more drinks per day is associated with an approximately 30% increase in risk (1–6). Recent alcohol consumption has also been associated with increased mammographic density but not benign breast disease, both important breast cancer risk factors (1); benign breast disease, however, has been associated with drinking at an early age (7). While most studies show little difference in risk based on beverage type, some do suggest that wine and liquor but not beer are associated with risk (8). Other aspects of drinking, including age at consumption and drinking patterns, as well as potentially modifying host factors, have been only minimally investigated (1, 2, 8, 9).

Several mechanisms have been proposed for how alcohol affects breast cancer risk (1). These mechanisms may include both early and late stage influences and may involve DNA damage, enhanced gland susceptibility, and elevated levels of steroid hormones (1, 10).

The objective of this analysis was to evaluate the effects of patterns of alcohol use (including age at drinking and ‘‘sporadic’’ versus ‘‘daily’’ drinking) on invasive breast cancer risk in the California Teachers Study (CTS) cohort, that is, a group of women among whom alcohol consumption of 20 or more grams per day is associated with elevated breast cancer risk (4). We also examined effect modification by a variety of health and lifestyle factors.

Materials and Methods

Study Population. The CTS cohort was established in 1995–1996 when 133,479 active and retired female teachers and administrators participating in the California State Teachers Retirement System returned a 16-page, mailed, optically scannable questionnaire (11). The questionnaire covered a wide variety of issues related to breast cancer risk and women’s health, including recent and past alcohol consumption. For purposes of this analysis, we excluded women (in a hierarchical
manner) who were not residing in California at baseline
\((n = 8,866)\); who reported having been diagnosed with
breast cancer before completing the baseline question-
naire, who were identified by the California Cancer
Registry as having had a previous breast cancer, or did
not adequately complete items related to a history of
breast cancer \((n = 6,267)\); who were age 85 or older at
baseline \((n = 1,994)\); or whose self-reported alcohol
consumption data were missing \((n = 1,745)\) or judged to
be unreliable in part \((n = 2,481)\) for past year consumption
and \(n = 7,220\) for consumption during earlier periods of
life) or in total \((n = 1,446)\). Of the 103,460 women
included in this analysis, 1,742 were diagnosed with
invasive breast cancer a month or more after joining the
cohort and before January 1, 2001. Women diagnosed
with \text{in situ} breast cancer \((n = 369)\) and women who had
moved out of California or died before January 1, 2001
\((n = 5,089)\) contributed person-months to the analysis
only up to the date of these events.

The CTS has been approved by the Institutional
Review Boards of the State of California, the Northern
California Cancer Center, the Public Health Institute, the
University of California, Irvine, and the University of
Southern California.

Alcohol Assessment. The number of drinks per week of beer, wine/champagne, and cocktails/liquor was
assessed for three time periods: age 18–22 years, age
30–35 years, and the previous year. Response categories
for usual frequency of consumption were none, <3/
week, 4–10/week, 11–17/week, 18–24/week, and 25 or
more per week. A drink was defined as: one bottle, can,
or glass of beer; one glass of wine, champagne, or a wine
icooler; or one cocktail, shot, or mixed drink of liquor.
Grams of alcohol per drink were assigned as 13.2 for
beer, 11.1 for wine, and 15.0 for liquor. Daily intake of
grams of alcohol was calculated for each woman during
each time period. For each beverage during each time
period, we also assessed the number of days per week in
which the respondent usually had at least one drink. We
classified women as “sporadic” drinkers if they con-
sumed alcohol on 4 or less days per week and “daily”
drinkers if they consumed alcohol on 5 or more days per
week. Average daily alcohol consumption for drinking
pattern analyses continued to be based on a weekly
calculation but expressed as grams per day, that is,
grams of alcohol consumed per week was divided by
seven (regardless of the number of days per week a
woman reported drinking on).

Follow-Up. The CTS cohort is followed annually for
cancer diagnosis, death, and change of address. Annual
linkage between the California Cancer Registry (CCR)
and the cohort membership is used to identify incident
cancer cases. The CCR is a population-based cancer
registry that is anchored in legislation that mandates
reporting. It covers the entire state of California, has
interstate agreements with 13 other states for case-
sharing purposes, is estimated to be over 97% complete,
and is part of the National Cancer Institute’s Surveil-
lance, Epidemiology, and End Results (SEER) program.
Thus, the CCR maintains the highest quality standards so
that all cohort members residing in California effectively
remain in active follow-up for cancer outcomes. Linkage
between the CTS cohort and the CCR database is based
on full name, date of birth, address, and social security
number, and includes manual review of possible matches. Mortality files as well as reports from relatives
are used to ascertain date and cause of death. Changes of
address are obtained by annual mailings, responses from
participants, and record linkages with multiple sources,
including the California Department of Motor Vehicles
and the US Postal Service National Change of Address
database.

Data Analysis. Follow-up time was calculated as the
number of months between joining the cohort (i.e., the
date the baseline questionnaire was completed) and either
the date of invasive breast cancer diagnosis, the diagnosis
of \text{in situ} breast cancer, the date of death, the date (or
estimated date) the woman moved out of California, or
December 31, 2000, whichever came first. \text{In situ} breast
cancer cases were censored (rather than included in the
analysis with invasive cases) for comparability with
previous studies, because the type of treatment for \text{in situ} breast cancer may affect the risk of subsequent invasive
breast cancer to varying degrees, and because there may
be differences in the etiological factors for these two
stages of breast cancer. In this cohort, \text{in situ} diagnoses are
largely ductal carcinoma \text{in situ} (DCIS) which are detected
primarily by mammogram, the biological significance of
which is not clear. Relative risks (RRs; hazard rate ratios)
and 95% confidence intervals (CIs) were estimated using
Cox proportional hazards regression models with time-
on-study used as the timescale and with age adjusted for
linearly within each of two age groups, that is, thus
allowing for different slopes for younger (<50 years) and
older (≥50 years) women. This approach produced point
estimates similar to those observed with the more
computationally intense approach of using age as the
timescale (i.e., where subjects enter the risk set at the age
they filled out the baseline questionnaire and exit at their
event/censoring age) with adjustment for birth cohort
(calendar time) effects. RRs for alcohol consumption of
≥20 g/day versus nondrinkers were of primary interest
based on previous findings (4). RRs were adjusted for
race/ethnicity (white, nonwhite), daily caloric intake
(linearly), a family history of breast cancer in a first
degree relative (yes/no), age at menarche (<12, ≥12),
nulliparity/age at first full-term pregnancy (FFTP) (nul-
liparous, FFTP ≤24, 25–29, ≥30), physical activity (hours
per week modeled linearly), body mass index (BMI; 25.8, 25.8–32.2, ≥32.3 kg/m²), and use and duration
of estrogen replacement therapy (ERT; none, ≤5 years, ≥5
years) (12, 13). Note: Hormone replacement therapy
(HRT) analyses in Tables 3 and 4 are based on
combination HRT; those reported in the text for the
duration and timing (current versus former) of use are
based on ERT use only because this information was not
available for progestin use. Effect modification under a
multiplicative model was formally assessed using meth-
ods described by Walter and Holford (14). Two-sided
P values for assessing interaction were based on the term
comparing nondrinkers to heavy drinkers (≥20 g/day).

Results

Figure 1 presents a summary of high-risk drinking
(≥20 g/day of alcohol) among cohort members at various

Cancer Epidemiol Biomarkers Prev 2004;13(3). March 2004
periods in their life. Heavy drinking during college (i.e., age 18–22) decreases with age at baseline (which means it increases with calendar year) and is most prevalent among women who were <40 years of age at baseline and in college during the late 1970s and 1980s. Heavy drinking during the mid/late-reproductive years (i.e., age 30–35) was most prevalent among women ages 50–64 at baseline (i.e., among women who were in their mid/late-reproductive years between 1965 and 1975). Women age 60–69 at baseline reported the highest prevalence of high-risk drinking in the preceding year.

Overall, women who consumed ≥20 g/day of alcohol in the year before joining the cohort had a statistically significant increased risk of invasive breast cancer compared to nondrinkers (RR = 1.28, 95% CI: 1.06–1.54). Consumption of <20 g/day did not increase risk. Table 1 presents these data and other age-specific drinking effects by menopausal status defined at the time of joining the cohort. Risk is significantly increased by 32% for recent (i.e., ‘past year’ which is the year before joining the cohort) average daily consumption of ≥20 g of alcohol among postmenopausal women. The corresponding increase of 21% in pre/perimenopausal women is not statistically significant but does not differ significantly from that of postmenopausal women (P value for interaction = 0.54). Among both pre/perimenopausal women, moderate drinking at ages 30–35 was associated with some elevation in risk but no dose-response pattern was observed; drinking at ages 18–22 was not associated with risk. When these analyses were repeated using lifetime never drinkers (i.e., women reporting no alcohol consumption between ages 18 and 22, 30, and 35, and during the year before joining the cohort) as the referent group, similar patterns were observed with the anticipated elevation in the point estimates. For example, for recent alcohol consumption of ≥20 g/day compared to lifetime never drinkers, RRs were 1.47 (95% CI: 1.15–1.87) for postmenopausal women and 1.39 (95% CI: 0.82–2.36) for pre/perimenopausal women. When change in consumption over time is examined (Table 1), heavy (≥20 g/day) recent consumption is associated with the highest RRs, regardless of previous level of consumption, and women who were previously high consumers but currently consume lower levels or no alcohol are not at significantly elevated risk.

Among postmenopausal women, breast cancer risk was significantly increased among ‘daily’ heavy drinkers (i.e., women consuming a weekly average of ≥20 g/day of alcohol and regularly consuming alcohol on 5 or more days per week; Table 2). Only two cases of invasive breast cancer were diagnosed among ‘sporadic’ heavy drinkers, making it impossible to determine if risk among this group differed from that among daily heavy drinkers. However, among moderate alcohol consumers (<20 g/day), risk was not associated with drinking pattern.

Among postmenopausal women, we examined modification of the alcohol effects by selected breast cancer risk factors. Table 3 presents subgroup-specific analyses, that is, looking at alcohol consumption within strata of the other variables of interest (where nondrinkers within each strata are treated as the referent group). Table 4 presents these analyses using a common referent group (i.e., nondrinkers in the low-risk strata of the variable of interest). In strata-specific analyses, heavy alcohol consumption often increased risk in subgroups otherwise at low risk of breast cancer (i.e., 42% among women without a family history of breast cancer for ≥20 g/day versus nondrinkers; 40% among women with a BMI below 27; and 41% among parous women) but not in subgroups at otherwise elevated risk (e.g., those with a family history of breast cancer, etc.). The exceptions to this observation were for physical activity and women with BBD. Heavy alcohol consumption increased risk similarly in both active and inactive women and women with and without BBD, respectively. For HRT use, risk was increased by 51% for alcohol consumers of ≥20 g/day (relative to nondrinkers) among high-risk women (i.e., those using combination HRT) but not among women who never used HRT. Further examination of the joint effects of alcohol consumption and ERT use showed that alcohol intake of ≥20 g/day (relative to nondrinkers) increased risk among current ERT users (RR = 1.37, 95% CI: 1.07–1.75) but not among former ERT users (RR = 1.08, 95% CI: 0.58–2.02). Among current ERT users, heavy alcohol consumption had similar effects on women who had used estrogen for 5 or fewer years (RR = 1.49, 95% CI: 0.93–2.39) and those who had used it for more than 5 years (RR = 1.34, 95% CI: 1.00–1.80). Women who currently consumed ≥20 g/day of alcohol per day and had used combination HRT had the highest observed RR of over 2-fold compared to nondrinkers who never used HRT; P value for interaction = 0.17; Table 4). However, neither this nor any of the other interactions examined in this study were statistically significant.

Discussion

Within this cohort, as well as in most other populations (1–6), average alcohol consumption of two or more drinks per day was associated with a modest increase in invasive breast cancer risk. While increased risk associated with drinking at younger ages cannot be ruled out in our data, recent drinking was most clearly associated with risk. This pattern was apparent when examining the
effects of alcohol at various ages, when either non-drinkers during that period or lifetime nondrinkers were used as the referent group, and when looking at changes in consumption over time. This finding is consistent with some, but not all, previous studies (1, 15–17). Similarly, while not statistically different in the present or some past studies, the effects of alcohol consumption were more consistent and somewhat greater in postmenopausal women than in premenopausal women (2, 3, 15, 17). Whether this observation reflects the lower statistical power among premenopausal women in these studies [due to the overall fewer number of premenopausal women or to temporal changes in drinking patterns resulting in a smaller proportion of recent heavy drinkers among pre/perimenopausal women (see Fig. 1)] or the less detrimental effects of alcohol at younger ages cannot be determined from the available studies.

Drinking patterns, taking into account both quantity and frequency, have not been previously examined to any extent. Tjonneland et al. (8) found that occasional drinkers (who in that study consisted solely of women consuming alcohol on 4 or fewer days per week and less than a weekly average of 20 g/day) were at lower risk (RR = 1.32, 95% CI: 0.67–2.60) than heavy drinkers (those consuming 25–60 g/day; RR = 1.45, 95% CI: 1.10–1.92) but at higher risk than regular moderate (women consuming alcohol on 5 or more days per week with a weekly average of 13–24 g/day) or light (7–12 g/day) drinkers (RR = 1.18, 95% CI: 0.90–1.56 and RR = 0.97, 95% CI: 0.74–1.28, respectively). We were also limited in our ability to assess drinking patterns, but our analyses, even more strongly than those of Tjonneland et al., suggested that it was the amount of alcohol consumed as opposed to the number of days on which it was consumed that was associated with increased risk of breast cancer.

Table 1. RRs and 95% CIs for invasive breast cancer associated with alcohol consumption at different periods in life, by menopausal status at the time of joining the CTS cohort

<table>
<thead>
<tr>
<th>Alcohol consumption (g/day)</th>
<th>Pre/perimenopausal women</th>
<th></th>
<th>Postmenopausal women</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cases</td>
<td>Person-years</td>
<td>RR</td>
<td>95% CI</td>
</tr>
<tr>
<td>Past year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nondrinkers</td>
<td>95</td>
<td>60,221</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td><5</td>
<td>53</td>
<td>33,193</td>
<td>0.93</td>
<td>0.66–1.30</td>
</tr>
<tr>
<td>5–9</td>
<td>55</td>
<td>33,437</td>
<td>1.05</td>
<td>0.75–1.47</td>
</tr>
<tr>
<td>10–14</td>
<td>42</td>
<td>23,776</td>
<td>1.09</td>
<td>0.75–1.57</td>
</tr>
<tr>
<td>15–19</td>
<td>27</td>
<td>11,824</td>
<td>1.28</td>
<td>0.83–1.97</td>
</tr>
<tr>
<td>≥20</td>
<td>23</td>
<td>10,264</td>
<td>1.21</td>
<td>0.76–1.92</td>
</tr>
<tr>
<td>Age 30–35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nondrinkers</td>
<td>66</td>
<td>34,936</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td><5</td>
<td>47</td>
<td>23,994</td>
<td>0.98</td>
<td>0.67–1.43</td>
</tr>
<tr>
<td>5–9</td>
<td>67</td>
<td>27,036</td>
<td>1.27</td>
<td>0.90–1.79</td>
</tr>
<tr>
<td>10–14</td>
<td>43</td>
<td>18,151</td>
<td>1.23</td>
<td>0.84–1.82</td>
</tr>
<tr>
<td>15–19</td>
<td>21</td>
<td>8,985</td>
<td>1.15</td>
<td>0.70–1.89</td>
</tr>
<tr>
<td>≥20</td>
<td>17</td>
<td>9,085</td>
<td>0.91</td>
<td>0.53–1.57</td>
</tr>
<tr>
<td>Change in consumption</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Past year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>56</td>
<td>30,618</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>None <20</td>
<td>25</td>
<td>9,678</td>
<td>1.28</td>
<td>0.79–2.05</td>
</tr>
<tr>
<td>None <20 <20</td>
<td>10</td>
<td>4,167</td>
<td>1.20</td>
<td>0.61–2.35</td>
</tr>
<tr>
<td>None/ <20/ ≥20</td>
<td>143</td>
<td>64,818</td>
<td>1.16</td>
<td>0.85–1.59</td>
</tr>
<tr>
<td>None/ ≥20/ ≥20</td>
<td>45</td>
<td>9,142</td>
<td>1.21</td>
<td>0.87–1.68</td>
</tr>
<tr>
<td>Change in consumption</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Past year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>60</td>
<td>36,805</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>None <20</td>
<td>31</td>
<td>16,620</td>
<td>1.11</td>
<td>0.72–1.72</td>
</tr>
<tr>
<td>None <20 <20</td>
<td>47</td>
<td>21,040</td>
<td>1.10</td>
<td>0.75–1.62</td>
</tr>
<tr>
<td>None/ <20/ ≥20</td>
<td>115</td>
<td>68,059</td>
<td>1.06</td>
<td>0.77–1.45</td>
</tr>
<tr>
<td>None/ ≥20/ ≥20</td>
<td>10</td>
<td>12,891</td>
<td>0.65</td>
<td>0.33–1.28</td>
</tr>
<tr>
<td>None/ ≥20/ ≥20</td>
<td>20</td>
<td>7,351</td>
<td>1.34</td>
<td>0.80–2.24</td>
</tr>
<tr>
<td>≥20</td>
<td>9</td>
<td>3,820</td>
<td>1.22</td>
<td>0.62–2.40</td>
</tr>
</tbody>
</table>

aCase counts and total person-years reflect women with complete data on all covariates of interest.

bAdjusted for age, race/ethnicity, caloric intake, family history of breast cancer, age at menarche, nulliparity/age at FFTP, physical activity, BMI, and duration of ERT use.

cAmong women >35 years old at baseline.

dAmong women >22 years old at baseline.

Five or fewer cases.
Table 2. Association between drinking patterns in the year before baseline and subsequent invasive breast cancer risk among postmenopausal women in the CTS

<table>
<thead>
<tr>
<th>Drinking patterna</th>
<th>Casesb</th>
<th>Person-years</th>
<th>RRc</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nondrinkers</td>
<td>311</td>
<td>65,975</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>“Sporadic”</td>
<td>282</td>
<td>61,517</td>
<td>0.99</td>
<td>0.84–1.17</td>
</tr>
<tr>
<td>“Daily” <20 g/day</td>
<td>116</td>
<td>22,306</td>
<td>1.07</td>
<td>0.86–1.32</td>
</tr>
<tr>
<td>“Daily” ≥20 g/day</td>
<td>110</td>
<td>16,952</td>
<td>1.34</td>
<td>1.07–1.67</td>
</tr>
</tbody>
</table>

"Sporadic" drinker defined as consuming alcohol on 4 or less days per week; "daily" drinker defined as consuming alcohol on 5 or more days per week.

aRR (95% CI) and [number of breast cancer cases with complete data on all covariates of interest]; adjusted for age, race/ethnicity, caloric intake, age at menarche, family history of breast cancer, BMI, nulliparity/age at FFPT, physical activity, BMI, and duration of ERT use.

bCase counts and total person-years reflect women with complete data on all covariates of interest.

cAdjusted for age, race/ethnicity, caloric intake, family history of breast cancer, age at menarche, nulliparity/age at FFPT, physical activity, BMI, and duration of ERT use.

Table 3. Associationsa between recent alcohol consumption and postmenopausal breast cancer among selected subgroups in the CTS

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Alcohol consumption</th>
<th>Nondrinkers</th>
<th><20 g/day</th>
<th>≥20 g/day</th>
<th>RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No family history of breast cancer</td>
<td></td>
<td>1.0 [294]</td>
<td>1.04 (0.89–1.22)</td>
<td>433</td>
<td>1.42 (1.13–1.79) [105]</td>
</tr>
<tr>
<td>Breast cancer in a first degree relative</td>
<td></td>
<td>1.0 [65]</td>
<td>0.94 (0.69–1.29)</td>
<td>106</td>
<td>0.92 (0.54–1.57) [18]</td>
</tr>
<tr>
<td>BMI < 27.3 (normal or only marginally overweight)</td>
<td></td>
<td>1.0 [195]</td>
<td>1.09 (0.92–1.30)</td>
<td>404</td>
<td>1.40 (1.09–1.79) [99]</td>
</tr>
<tr>
<td>BMI ≥ 27.3 (overweight or obese)</td>
<td></td>
<td>1.0 [116]</td>
<td>0.88 (0.69–1.13)</td>
<td>135</td>
<td>1.10 (0.71–1.72) [24]</td>
</tr>
<tr>
<td>Parous</td>
<td></td>
<td>1.0 [239]</td>
<td>1.10 (0.94–1.29)</td>
<td>443</td>
<td>1.41 (1.11–1.80) [95]</td>
</tr>
<tr>
<td>Nulliparous</td>
<td></td>
<td>1.0 [72]</td>
<td>0.77 (0.56–1.04)</td>
<td>96</td>
<td>1.02 (0.65–1.59) [28]</td>
</tr>
<tr>
<td>Physically activeb</td>
<td></td>
<td>1.0 [167]</td>
<td>1.09 (0.91–1.32)</td>
<td>365</td>
<td>1.33 (1.02–1.74) [81]</td>
</tr>
<tr>
<td>Not physically active</td>
<td></td>
<td>1.0 [144]</td>
<td>0.93 (0.75–1.17)</td>
<td>174</td>
<td>1.34 (0.95–1.90) [42]</td>
</tr>
<tr>
<td>No history of benign breast disease (BBD)</td>
<td></td>
<td>1.0 [228]</td>
<td>1.01 (0.85–1.19)</td>
<td>384</td>
<td>1.26 (0.99–1.64) [85]</td>
</tr>
<tr>
<td>Biopsy indicating BBD</td>
<td></td>
<td>1.0 [83]</td>
<td>1.07 (0.82–1.40)</td>
<td>135</td>
<td>1.84 (0.85–3.6) [36]</td>
</tr>
<tr>
<td>No HRT</td>
<td></td>
<td>1.0 [68]</td>
<td>0.99 (0.72–1.37)</td>
<td>87</td>
<td>0.95 (0.53–1.73) [15]</td>
</tr>
<tr>
<td>Estrogen only</td>
<td></td>
<td>1.0 [98]</td>
<td>0.98 (0.76–1.27)</td>
<td>157</td>
<td>1.24 (0.84–1.84) [36]</td>
</tr>
<tr>
<td>Estrogen plus progestin</td>
<td></td>
<td>1.0 [130]</td>
<td>1.09 (0.88–1.35)</td>
<td>282</td>
<td>1.51 (1.13–2.03) [70]</td>
</tr>
</tbody>
</table>

aRR (95% CI) and [number of breast cancer cases with complete data on all covariates of interest]; adjusted for age, race/ethnicity, caloric intake, age at menarche, family history of breast cancer, BMI, nulliparity/age at FFPT, physical activity, and duration of ERT use.

bDefined as 1.5 or more hours per week of strenuous or moderate exercise during the past 3 years.

cAdjusted for age, race/ethnicity, caloric intake, family history of breast cancer, BMI, nulliparity/age at FFPT, physical activity, and duration of ERT use.
Table 4. Joint associations\(^a\) between recent alcohol consumption and other risk factors for postmenopausal breast cancer in the CTS

<table>
<thead>
<tr>
<th>Alcohol consumption</th>
<th>Nondrinkers</th>
<th><20 g/day</th>
<th>≥20 g/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family history of breast cancer in a first degree relative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No(^c)</td>
<td>1.0</td>
<td>1.04 (0.89–1.22)</td>
<td>1.44 (1.14–1.81)</td>
</tr>
<tr>
<td>Yes</td>
<td>1.63 (1.24–2.15)</td>
<td>1.56 (1.24–1.96)</td>
<td>1.44 (0.89–2.33)</td>
</tr>
<tr>
<td>BMI (kg/m(^2))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><27.3</td>
<td>1.0</td>
<td>1.10 (0.93–1.31)</td>
<td>1.41 (1.10–1.80)</td>
</tr>
<tr>
<td>≥27.3</td>
<td>1.21 (0.96–1.53)</td>
<td>1.06 (0.85–1.32)</td>
<td>1.33 (0.87–2.04)</td>
</tr>
<tr>
<td>Parous</td>
<td>1.0</td>
<td>1.10 (0.94–1.29)</td>
<td>1.40 (1.10–1.78)</td>
</tr>
<tr>
<td>Nulliparous</td>
<td>1.26 (0.97–1.64)</td>
<td>0.99 (0.78–1.25)</td>
<td>1.31 (0.89–1.94)</td>
</tr>
<tr>
<td>Physically active(^b)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>1.0</td>
<td>1.09 (0.91–1.31)</td>
<td>1.32 (1.01–1.72)</td>
</tr>
<tr>
<td>No</td>
<td>1.12 (0.89–1.40)</td>
<td>1.05 (0.85–1.30)</td>
<td>1.53 (1.09–2.15)</td>
</tr>
<tr>
<td>Biopsy-diagnosed BBD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No(^c)</td>
<td>1.0</td>
<td>1.00 (0.85–1.19)</td>
<td>1.26 (0.98–1.63)</td>
</tr>
<tr>
<td>Yes</td>
<td>1.35 (1.05–1.73)</td>
<td>1.46 (1.19–1.79)</td>
<td>1.97 (1.39–2.79)</td>
</tr>
<tr>
<td>Use of HRT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>1.0</td>
<td>1.00 (0.72–1.37)</td>
<td>0.94 (0.54–1.65)</td>
</tr>
<tr>
<td>Estrogen only</td>
<td>1.18 (0.87–1.60)</td>
<td>1.17 (0.88–1.56)</td>
<td>1.54 (1.04–2.30)</td>
</tr>
<tr>
<td>Estrogen plus progestin</td>
<td>1.53 (1.14–2.05)</td>
<td>1.63 (1.25–2.14)</td>
<td>2.24 (1.59–3.14)</td>
</tr>
</tbody>
</table>

\(^a\)RR (95% CI) adjusted for age, race/ethnicity, caloric intake, age at menarche, and except in models with these factors as main effects, for a family history of breast cancer, BMI, nulliparity/age at FFTP, physical activity, and duration of ERT use.

\(^b\)Defined as 1.5 or more hours per week of strenuous or moderate exercise during the past 3 years.

\(^c\)Nulliparous and age at FFTP.

in the NHS and the CTS) who have used HRT (‘‘ever use of ERT’’ in the IWHS, current ERT/HRT use for >5 years in the NHS, and for ‘‘ever’’ use of combination HRT and for current use of ERT for >5 years in the CTS) are at approximately twice the risk of developing invasive breast cancer (RR = 1.83, 95\% CI: 1.18–2.85 in the IWHS; RR = 1.99, 95\% CI: 1.41–2.79 in the NHS; and RR = 2.24, 95\% CI: 1.59–3.14 and RR = 2.20, 95\% CI: 1.57–3.08, respectively, in the present study). Contrary to these findings, risk associated with a 10 g/day increase in alcohol consumption was similar for never, past, and current ERT/HRT users in Denmark (8) and in the pooled analysis of both cohort and case-control studies (2, 3). Thus, on balance, it is unclear whether the risk associated with the combination of heavy drinking and ERT/HRT use is synergistic or additive.

Age-adjusted breast cancer incidence rates in the CTS cohort are more than 50\% higher than other white, non-Hispanic California women (11). A similar pattern is seen among women living in Marin County, CA, an area, like Long Island, NY, where high breast cancer rates are currently of substantial concern to residents (18). Both the CTS cohort and Marin County residents have particularly high exposure to both HRT and alcohol (ever use of HRT: 74\% in the CTS and 71\% in Marin County (19) versus 52\% in other California women; and 10\% of the CTS cohort consuming ≥20 g/day of alcohol in 1995–1996 and 27\% of Marin County women consuming ≥2 drinks per day in 1997–1999 versus 7\% of the NHS cohort consuming ≥20 g/day of alcohol in 1994). The established relationship between each of these factors and invasive breast cancer risk and the possible synergy between these two exposures suggests that limiting alcohol consumption to moderate amounts (i.e., an average of less than two drinks per day) and refraining from the use of HRT may reduce invasive breast cancer rates in these and other similarly high-risk populations.

While recall biases are likely to be low in cohort studies assessing alcohol exposure before cancer diagnosis, a potential limitation of our study, as with virtually all dietary and alcohol assessments that rely on using food-frequency questionnaires to assess intake, is the possibility of misclassification of exposure due to inaccuracies in reporting. We are in the process of conducting a reliability and validation/calibration study within the CTS cohort. Preliminary analyses of alcohol effects suggest a reasonably reliable and valid alcohol assessment for the ‘‘past year’’ period was obtained using the food-frequency questionnaire method compared to four 24-h recalls and that adjusting the overall alcohol effect for misclassification does not impact overall conclusions. However, we were not able to assess the reliability or validity of self-reports of alcohol consumption at younger ages. Thus, measurement error remains a possible explanation for the lack of association between drinking during earlier periods of life and subsequent breast cancer risk.

In summary, our findings suggest that recent alcohol consumption probably plays a larger role in invasive breast cancer risk than does consumption at earlier ages and that the average quantity of alcohol consumed is more important than the relative frequency with which it is consumed. The examination of host and lifestyle factors suggests that, with the exception of benign breast disease and HRT use, women who are otherwise at...
higher risk for postmenopausal breast cancer (e.g., women with a family history of breast cancer) may not accrue much additional risk with heavy alcohol consumption. An important exception to this observation may be the use of HRT where there is a consistent suggestion (albeit, a statistically nonsignificant interaction) in the CTS as well as in two other cohort studies that invasive breast cancer risk is highest among women exposed to both these factors. This combination of exposures may well play a role in the higher breast cancer incidence rates observed in certain populations and should be investigated further. Further investigation into the effects of genetic variation in the metabolism of alcohol and steroid hormones also may prove promising in elucidating the nature of these individual and joint relationships.

Acknowledgments
We thank Jane Sullivan-Halley for her work in preparing a number of the covariates used in this analysis and Orawan Takaki for administrative support.

References
Patterns of Alcohol Consumption and Breast Cancer Risk in the California Teachers Study Cohort

Pamela L. Horn-Ross, Alison J. Canchola, Dee W. West, et al.

Updated version
Access the most recent version of this article at:
http://cebp.aacrjournals.org/content/13/3/405

Cited articles
This article cites 17 articles, 2 of which you can access for free at:
http://cebp.aacrjournals.org/content/13/3/405.full#ref-list-1

Citing articles
This article has been cited by 6 HighWire-hosted articles. Access the articles at:
http://cebp.aacrjournals.org/content/13/3/405.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.