Short Communication

Exon 5 Polymorphisms in the O^6-Alkylguanine DNA Alkyltransferase Gene and Lung Cancer Risk in Non–Smokers Exposed to Second-Hand Smoke

Catherine Cohet,1 Stephane Borel,1 Fredrik Nyberg,2 Anush Mukeria,3 Irene Brüské-Hohlfeld,4 Vali Constantinescu,5 Simone Benhamou,6 Paul Brennan,7 Janet Hall,1 and Paolo Boffetta1

1International Agency of Research on Cancer, Lyon, France; 2Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden; 3Institute of Carcinogenesis, Moscow, Russia; 4National Research Center for Environment and Health (GSF), Munich, Germany; 5National Institute of Public Health, Bucharest, Romania; 6National Institute of Health and Medical Research (Institut National de la Santé et de la Recherche Médicale) and Evry University, Evry, France

Abstract

Purpose: The objective of the study was to examine the association of three exon 5 variants in the O^6-alkylguanine DNA alkyltransferase (AGT) gene involved in the repair of the mutagenic DNA lesion O^6-alkylguanine formed by nitrosamines, with lung cancer risk in never-smokers.

Experimental Design: Exon 5 of the AGT gene was sequenced in genomic DNA from 136 cases and 133 hospital- or population-based controls for whom questionnaire information on second-hand smoke and diet was available to determine the frequencies of the Gly160 Arg, Ile143 Val, and Lys178 Arg variant alleles.

Results: No codon 160 Arg variant alleles were found in the study population. The codon 143 Val and 178 Arg variant alleles, present at allele frequencies of 0.07, showed 100% linkage. The odds ratio (OR) of lung cancer for these variant carriers was 2.05 [95% confidence interval (CI) 1.03–4.07]. The risk varied between the different lung cancer pathologies with an increased risk for adenocarcinoma (OR 2.67, 95% CI 1.21–5.87) or small cell carcinoma (OR 4.83, 95% CI 0.91–25.7) but not for squamous cell carcinoma (OR 1.07, 95% CI 0.27–4.18). Compared with individuals carrying the mutant alleles unexposed to second-hand smoke, the OR for exposed variant carriers was 1.95 (95% CI 0.53–1.15); a similar interaction, although not significative, was observed for low consumption of cruciferous vegetables and for green vegetables and tomatoes.

Conclusions: These results point toward a role of AGT polymorphisms in lung cancer susceptibility among never-smokers, in particular among subjects exposed to environmental carcinogens.

Introduction

Second-hand smoke, a widely studied lung cancer risk factor among non-smokers, is a complex mixture containing several groups of carcinogens, including carcinogenic N-nitroso compounds (1), the metabolites of which form the mutagenic DNA lesion O^6-alkylguanine. This adduct is predominantly repaired via the activity of O^6-alkylguanine DNA alkyltransferase (AGT), which irreversibly transfers the alkyl group to an internal cysteine acceptor site, leading to its inactivation and the restoration of the guanine moiety in the DNA. Animals lacking AGT are more sensitive to carcinogenesis and show increased cytotoxicity when exposed to alkylating agents (2).

Several polymorphisms of the human AGT have been described. A Gly160 Arg variant in exon 5, 15 amino acids away from the cysteine in the active site, was originally reported at an allele frequency of ~15% (3); however, lower frequencies, in the order of 0–1.5%, were found in subsequent studies (4–7). The exon 5 variants Ile143 Val and Lys178 Arg have been reported at allele frequencies of up to 21% with a strong linkage disequilibrium being noted between them (4, 7, 8). In addition, five polymorphisms in the promoter, one in exon 1 and two in exon 3, have been reported (9). In one study, presence of the codon 143 valine allele was shown to be associated with an increased lung cancer risk among smokers [odds ratio (OR) 2.1, 95% confidence interval (CI) 1.01–4.7; Ref. 7].

The goal of this present study was to examine the role of the three exon 5 variants as potential susceptibility factors for lung cancer in never-smokers. As alterations of the active site cysteine by oxidative stress may change the active site’s status, the potential interaction of the polymorphisms with other environmental factors such as dietary constituents containing antioxidants was also addressed.

Materials and Methods

Subjects. The DNA used was isolated from peripheral blood samples collected from participants in a multicenter case-control study of lung cancer in never-smokers conducted in eight countries between 1992 and 1994 (10). All participants provided an informed consent and relevant review boards approved the study. Study subjects (136 incident cases and 133 controls, Table 1) were all Caucasian and had smoked <400 cigarettes or an equivalent amount of cigars, cigarillos, or pipe tobacco during their life; they had completed a questionnaire assessing exposure to second-hand tobacco smoke and fre-
Results

The allele frequency of the codon 143Val and the codon 178Arg variants among controls was 0.07, although some variation was noted between different countries: from 0% in Poland and France to 13% in Sweden. All individuals carrying the codon 143Val variant were known to also carry the codon 178Arg variant. It was therefore assumed that complete linkage disequilibrium existed between these two variants. The genotype distributions were consistent with Hardy-Weinberg equilibrium in both cases and controls. No codon 166Arg variant alleles were found in the 269 samples sequenced. A statistically significant elevation in the risk of lung cancer was associated with the codon 143Val/178Arg variant alleles (OR 2.05, 95% CI 1.03–4.07); the OR was increased for adenocarcinoma and small cell carcinoma but not for squamous cell carcinoma (Table 2). Testing for heterogeneity showed that the histology-specific ORs were different (P = 0.001). As compared with wild-type individuals unexposed to second-hand smoke, the OR for exposed wild-type individuals was 1.25 (95% CI 0.65–2.38), whereas for exposed individuals carrying the mutant alleles, the OR was 1.95 (95% CI 0.53–6.5) compared with unexposed subjects (Table 3). Although not significant, an interaction similar to the one observed for second-hand smoke was suggested between low consumption of cruciferous vegetables (OR = 2.45, 95% CI 0.47–13.00) or green vegetables and tomatoes (OR = 1.92, 95% CI 0.27–13.58) and presence of these variants (Table 3).

Discussion

This study confirms previous results of an increased risk of lung cancer among carriers of AGT exon 5 variants and suggests that the risk might be strongest in the presence of low-level exposure to environmental pollutants, as in the case of non-smokers exposed to second-hand smoke. This study suffers from several potential limitations; firstly, the stratified analyses were underpowered, although the main analysis was not affected by limited power and resulted in statistically significant ORs. Secondly, controls were hospital or community based. However, the fact that the genotype distribution of cases and controls was in Hardy Weinberg equilibrium argues against bias in the selection of controls. Although a mechanistic interpretation of these results is not straightforward, codons 143 and 178 are both close to the

| Table 2 | Odds ratio of lung cancer for codon 143 and 178 polymorphisms

<table>
<thead>
<tr>
<th></th>
<th>Cases</th>
<th>Controls</th>
<th>Odds ratio</th>
<th>95% confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All subjects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wild-type</td>
<td>102</td>
<td>115</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Mutant</td>
<td>34</td>
<td>18</td>
<td>2.05</td>
<td>1.03–4.07</td>
</tr>
<tr>
<td>Squamous cell carcinoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wild-type</td>
<td>17</td>
<td>115</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Mutant</td>
<td>3</td>
<td>18</td>
<td>1.07</td>
<td>0.27–4.18</td>
</tr>
<tr>
<td>Small cell carcinoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wild-type</td>
<td>4</td>
<td>115</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Mutant</td>
<td>3</td>
<td>18</td>
<td>4.83</td>
<td>0.91–25.7</td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wild-type</td>
<td>47</td>
<td>115</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Mutant</td>
<td>24</td>
<td>18</td>
<td>2.67</td>
<td>1.21–5.87</td>
</tr>
</tbody>
</table>

a Odds ratios are adjusted for country. Reference category: wild-type.

b Heterozygous or homzygous mutant; one case of adenocarcinoma was homozygous mutant, all other cases and controls were either homozygous wild-type or heterozygous.
active site of the repair protein and AGT activity might be influenced by amino acid substitutions in this region. The AGT activity has been previously measured using an in vitro assay with DNA containing O6-methylguanine as the substrate in lymphocyte protein extracts prepared from 145 of the individuals studied here (13). The presence of the codon 143 and 178 variant alleles did not correlate with a significant change in the mean enzyme activity in either the cases or controls (Ps of difference, Mann-Whitney test, 0.31 and 0.27, respectively). In that analysis, a weak, nonsignificant difference in AGT activity was detected between cases and controls. The AGT genotype shows a stronger association with lung cancer risk than measurement of its enzymatic activity in peripheral blood lymphocytes at the time of disease. However, the functional consequences of these polymorphisms remain to be established. Because the reaction of AGT leads to its inactivation, any substrate for the protein acts as an irreversible inhibitor. The presence of the codon 160 Arg variant, although having only a small effect on the activity of AGT toward methylated DNA in vitro (3), reduces the inactivation of the AGT protein by the inhibitor O6-benzyguanine with at least a 20-fold increase in the ED\textsubscript{50} (14), suggesting that the ability to inactivate is also a critical factor in the response of AGT to environmental carcinogens. Although comparable data on the effect of codon 143 and codon 178 variants on inactivation of AGT are not available, it has been shown that several amino acid substitutions within the active site pocket of AGT can influence its inactivation, and it remains to be determined whether these natural variants can also impart resistance (15). In conclusion, individual susceptibility from polymorphisms in genes involved in critical steps of carcinogenesis may play a particularly important role in circumstances of low-level exposure to environmental carcinogens (16): our results support this notion in the case of lung cancer development among non-smokers exposed to second-hand smoke.

Acknowledgments
We thank L. Simionato, C. Fortes, A. Menezes, and H. Batura-Gabryel who provided access to study subjects.

References

Table 3 Interaction between codon 143 and 178 polymorphisms and exposure to second-hand smoke and dietary factors

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Polymorphism</th>
<th>Unexposed</th>
<th></th>
<th></th>
<th></th>
<th>Exposed</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ca/Co</td>
<td>Odds ratio (95% confidence interval)</td>
<td>Ca/Co</td>
<td>Odds ratio (95% confidence interval)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second-hand smoke</td>
<td>Wild-type</td>
<td>26/41</td>
<td>1.00<sup>a</sup></td>
<td>76/74</td>
<td>1.25 (0.65–2.38)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mutant<sup>c</sup></td>
<td>8/8</td>
<td>1.00<sup>a</sup></td>
<td>26/10</td>
<td>1.95 (0.53–1.51)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interaction<sup>d</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low fruit intake</td>
<td>Wild-type</td>
<td>59/41</td>
<td>1.00<sup>b</sup></td>
<td>41/82</td>
<td>0.78 (0.32–1.91)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mutant<sup>c</sup></td>
<td>16/7</td>
<td>1.00<sup>b</sup></td>
<td>16/7</td>
<td>0.91 (0.07–12.52)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interaction<sup>d</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low cruciferous vegetable intake</td>
<td>Wild-type</td>
<td>55/49</td>
<td>1.00<sup>b</sup></td>
<td>45/53</td>
<td>1.16 (0.56–2.39)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mutant<sup>c</sup></td>
<td>15/9</td>
<td>1.00<sup>b</sup></td>
<td>17/5</td>
<td>2.45 (0.47–13.00)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interaction<sup>d</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low green vegetable and tomato intake</td>
<td>Wild-type</td>
<td>59/65</td>
<td>1.00<sup>b</sup></td>
<td>41/38</td>
<td>1.52 (0.76–3.01)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mutant<sup>c</sup></td>
<td>16/8</td>
<td>1.00<sup>b</sup></td>
<td>16/8</td>
<td>1.92 (0.27–13.58)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interaction<sup>d</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P for interaction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a Odds ratios are adjusted for country.
^b Unexposed subjects are the reference category.
^c Heterozygous or homozygous.
^d Odds ratio of the term of interaction between polymorphism and each environmental factor.
Exon 5 Polymorphisms in the O^6-Alkylguanine DNA Alkyltransferase Gene and Lung Cancer Risk in Non-Smokers Exposed to Second-Hand Smoke

Catherine Cohet, Stephane Borel, Fredrik Nyberg, et al.

Updated version

Access the most recent version of this article at:

http://cebp.aacrjournals.org/content/13/2/320

Cited articles

This article cites 14 articles, 5 of which you can access for free at:

http://cebp.aacrjournals.org/content/13/2/320.full#ref-list-1

Citing articles

This article has been cited by 12 HighWire-hosted articles. Access the articles at:

http://cebp.aacrjournals.org/content/13/2/320.full#related-urls

E-mail alerts

Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions

To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.