Editorial

Pediatric Cancer in the United States: The Children’s Oncology Group Epidemiology Research Program

Julie A. Ross¹ and Andrew F. Olshan²

¹University of Minnesota Cancer Center, Minneapolis, Minnesota and ²Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina

Childhood Cancer—The Problem

Over 8,500 children under age 15 years are diagnosed with cancer each year in the United States (1). Unlike adults, where epithelial tumors predominate, the most common types of cancer in children include the leukemias and lymphomas and the tumors of the central and sympathetic nervous systems, soft tissue, bone, and kidney. The overall incidence rate for childhood cancers has increased significantly by almost 33% during the period 1975 to 2001 (1), although, in more recent years, the rate has been leveling off. Only ~5% of childhood cancers can primarily be attributed to a genetic predisposition (2). With the exception of a few known risk factors including in utero exposure to radiation and prior chemotherapeutic agents (3), the etiology of most childhood cancer is unknown. Because of its rarity, epidemiologic studies of childhood cancer are challenging. In particular, using a case-control approach necessitates careful assembly of well-characterized cases, which requires cooperation among many hospitals and institutions and the identification of a feasible and valid control group. In this editorial, we highlight the current challenges and approaches to advancing our understanding of the etiology of childhood cancer.

Cooperative Clinical Trials Groups: Children’s Oncology Group

Most previous epidemiologic studies of childhood cancer in the United States were conducted through the former Children’s Cancer Group (see Table 1), which consisted of approximately half of the hospitals and institutions that treated children with cancer (4). In 2000, the Children’s Oncology Group (COG), an international consortium of hospitals and institutions in the United States, Canada, and elsewhere, was established through the merger of four pediatric oncology clinical trial groups, including Children’s Cancer Group, Pediatric Oncology Group, National Wilms’ Tumor Study Group, and International Rhabdomyosarcoma Study Group. It is estimated that ~90% of children diagnosed with cancer in the United States are treated by a member institution of the COG (4). In addition to an Operations Center, a Research and Statistical Data Center, a Group Chair’s Office (currently, Dr. Gregory H. Reaman), and nearly 250 affiliated COG institutions who are committed to participate in therapeutic and nontherapeutic trials, scientific and discipline standing committees are charged with proposing innovative research in their respective fields.

The COG Epidemiology Steering Committee (n = 12) consists of epidemiologists, molecular biologists, pediatric oncologists, nurses, and other health professionals. Moreover, ~30 individuals from various disciplines around the world are associate members of the committee. Several key areas for future initiatives have been identified by members, including (a) addressing important methodologic issues (including control selection and exposure assessment), (b) expanding studies of gene-environment interactions, and (c) developing educational materials. Current examples of the former two are discussed briefly below. Finally, because of the nationwide coverage of COG, a North American pediatric cancer registry is being proposed.

Addressing Important Methodologic Issues (e.g., Control Selection). To date, most national epidemiology studies of pediatric cancer have used random digit dialing for control selection. However, with the telemarketing burden and the increasing use of answering machines, cellular telephones, and caller identification, the efficiency of random digit dialing is decreasing. Further, concerns about the validity of this method are increasing. Our most recent experience with random digit dialing suggests overall response rates (5) of <40%. The COG Epidemiology Steering Committee held a workshop in 2002 to discuss the pros and cons of alternative control groups. Smaller-scale studies conducted in New York and California have successfully recruited controls through birth certificates (6-8). Although response rates are similar to random digit dialing, the ability to characterize nonresponders to evaluate potential selection bias is a distinct advantage. In 2003, our committee surveyed all 52 birth registrars in the United

__

Cancer Epidemiol Biomarkers Prev 2004;13(10):1552–4
Received 8/16/04; accepted 8/17/04.
Grant support: NIH grant U01-CA98543 and Children’s Cancer Research Fund.
Requests for reprints: Julie A. Ross, University of Minnesota Cancer Center, MMC 422, 420 Delaware Street Southeast, Minneapolis, MN 55455. Phone: 612-626-2902; Fax: 612-626-4842. E-mail: ross@epi.umn.edu
Copyright © 2004 American Association for Cancer Research.

¹ Dr. Ross is Chair and Dr. Olshan is a member of the COG Epidemiology Steering Committee.
States and found that >70% could release identifying information from birth certificates. This method for control selection will be used in the expansion of the epidemiology of infant leukemia study as well as the proposed hepatoblastoma study. Further, members of the committee plan to submit a grant proposal to test and characterize the feasibility of using birth certificates for recruiting controls up to age 15 years.

Expanding Studies of Gene-Environment Interactions. Childhood cancer studies are only beginning to incorporate single nucleotide polymorphisms and haplotypes into studies of gene-gene and gene-environment interactions (9-13). A few of the studies in Table 1 have and will be incorporating susceptibility markers into analyses (E14, E15, AE24, and AE27). However, these types of studies require large sample sizes. It is expected that a national pediatric cancer registry will help facilitate this type of research through the expedient acquisition of diverse biological samples from both parents and children. The committee is hosting a workshop on gene-environment interactions in childhood cancer in October 2004 to discuss various study design issues to consider once a registry is in place.

North American Pediatric Cancer Registry

Because COG treats the vast majority of children with cancer in the United States (4), it makes sense to consider using COG as the basis for a national pediatric cancer registry. Importantly, individual institution ethical and review boards are requiring local investigators to contact and obtain signed consent forms from parents before they are approached to consider participation in COG-wide epidemiology, biology, and other nontherapeutic studies. (This is in addition to the mandatory institutional review board approval and informed consent that is required by the institution(s) and investigator(s) actually conducting the nontherapeutic study.) For COG epidemiologic studies, this can present a huge hurdle, as often with only one or two cases at a specific institution, it is necessary to obtain institutional review board approval at 200(!) or more institutions. Further, because local institutional investigators are often overworked and understaffed, there is a tendency to delay submitting nontherapeutic studies through institutional review boards and, once approved, difficulty in tracing and locating parents for consent to be interviewed.

Investigators within COG and the National Cancer Institute have initiated a pilot protocol called the Childhood Cancer Research Network (COG protocol AADM01P1) to determine the feasibility of establishing a registry. The protocol capitalizes on the mandatory registration (no personal identifiers) of all pediatric cancer patients that COG requires of institutions to maintain membership. The additional requirements for the protocol are simple: institutions are asked to (a) obtain consent from parents (and children if they are age

Table 1. Children's Cancer Group/COG etiology of childhood cancer studies

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Title</th>
<th>Cases (n)</th>
<th>Chairperson</th>
<th>Source of funds</th>
</tr>
</thead>
<tbody>
<tr>
<td>E01</td>
<td>Case-control study of osteogenic sarcoma</td>
<td>200</td>
<td>T. Pendergrass</td>
<td>Local</td>
</tr>
<tr>
<td>E02</td>
<td>Case-control study of hepatoblastoma</td>
<td>75</td>
<td>J. Buckley</td>
<td>Local</td>
</tr>
<tr>
<td>E03</td>
<td>Case-control study of Ewing's sarcoma</td>
<td>170</td>
<td>L. Robison</td>
<td>NIH</td>
</tr>
<tr>
<td>E04</td>
<td>Self-administered questionnaire</td>
<td>3,500</td>
<td>J. Buckley</td>
<td>Local</td>
</tr>
<tr>
<td>E05</td>
<td>Case-control study of acute nonlymphoblastic leukemia</td>
<td>204</td>
<td>L. Robison</td>
<td>NIH</td>
</tr>
<tr>
<td>E06</td>
<td>Case-control study of Wilms' tumor*</td>
<td>240</td>
<td>A. Olshan</td>
<td>March of Dimes</td>
</tr>
<tr>
<td>E07</td>
<td>Case-control study of retinoblastoma</td>
<td>270</td>
<td>A. Meadows</td>
<td>NIH</td>
</tr>
<tr>
<td>E08</td>
<td>Case-control study of non-Hodgkin's lymphoma</td>
<td>249</td>
<td>J. Buckley</td>
<td>NIH</td>
</tr>
<tr>
<td>E09</td>
<td>Case-control study of infant leukemia</td>
<td>302</td>
<td>L. Robison</td>
<td>NIH</td>
</tr>
<tr>
<td>E10</td>
<td>Case-control study of rhabdomyosarcoma*</td>
<td>300</td>
<td>S. Grufferman</td>
<td>NIH</td>
</tr>
<tr>
<td>E11</td>
<td>Twin concordance study</td>
<td>850</td>
<td>J. Buckley</td>
<td>American Cancer Society</td>
</tr>
<tr>
<td>E12</td>
<td>Case-control study of primitive neural ectodermal tumor and astrocytoma</td>
<td>321</td>
<td>G. Bunin</td>
<td>NIH</td>
</tr>
<tr>
<td>E13</td>
<td>Case-control study of Hodgkin's disease*</td>
<td>300</td>
<td>S. Grufferman</td>
<td>NIH</td>
</tr>
<tr>
<td>E14</td>
<td>Case-control study of acute nonlymphoblastic leukemia</td>
<td>525</td>
<td>M. Steinbuch</td>
<td>NIH</td>
</tr>
<tr>
<td>E15</td>
<td>Case-control study of childhood acute lymphoblastic leukemia</td>
<td>1,915</td>
<td>L. Robison</td>
<td>NIH</td>
</tr>
<tr>
<td>E16</td>
<td>Parental occupation and childhood cancer</td>
<td>3,500</td>
<td>G. Bunin</td>
<td>March of Dimes</td>
</tr>
<tr>
<td>E18</td>
<td>Case-control study of neuroblastoma*</td>
<td>640</td>
<td>A. Olshan</td>
<td>NIH</td>
</tr>
<tr>
<td>E21</td>
<td>Case-control study of primitive neural ectodermal tumor</td>
<td>700</td>
<td>G. Bunin</td>
<td>NIH</td>
</tr>
<tr>
<td>AE22t</td>
<td>Case-control study of germ cell tumors</td>
<td>600</td>
<td>X. Shu</td>
<td>NIH</td>
</tr>
<tr>
<td>B955</td>
<td>Environmental exposures and Ras mutations in childhood leukemia</td>
<td>2,440</td>
<td>J. Perentesis</td>
<td>NIH</td>
</tr>
<tr>
<td>B956</td>
<td>Glutathione S-transferase genotype in childhood leukemia</td>
<td>2,440</td>
<td>S. Davies</td>
<td>NIH</td>
</tr>
<tr>
<td>AE23t</td>
<td>Case-control study of Down syndrome-leukemia and Down syndrome</td>
<td>160</td>
<td>J. Ross</td>
<td>NIH</td>
</tr>
<tr>
<td>AE24t</td>
<td>Case-control study of infant leukemia</td>
<td>480</td>
<td>J. Ross</td>
<td>NIH</td>
</tr>
<tr>
<td>A0026t</td>
<td>Case-control study of Wilms' tumor</td>
<td>600</td>
<td>A. Olshan</td>
<td>NIH</td>
</tr>
<tr>
<td>AADM01P1</td>
<td>Pilot for the Childhood Cancer Research Network</td>
<td>1,400</td>
<td>J. Ross</td>
<td>NIH</td>
</tr>
<tr>
<td>AE27t</td>
<td>Case-control study of hepatoblastoma</td>
<td>600</td>
<td>L. Spector</td>
<td>Pending, NIH</td>
</tr>
</tbody>
</table>

*Collaborative study with the Pediatric Oncology Group.
*COG study (others were Children's Cancer Group studies unless otherwise noted).
eligible) for release of personal identifiers at the time of
diagnosis and (b) obtain consent for possible future
contact to consider taking part in a nontherapeutic
study. That future study would be separately ex-
plained and consented by the individuals conducting
the study.

Ten percent of COG institutions were randomly
selected for the pilot protocol for the Childhood Cancer
Research Network. All of them obtained institutional
review board approval for the protocol. Of the 1,364
parents/patients approached thus far, 96% have agreed to
both levels of consent. Additional piloting efforts are
under way, including selecting a sample of parents to
determine the feasibility of interviewing them and ob-
taining a biological specimen from them and their child.

Childhood Cancer—The Future

The previous case-control studies of risk factors for
childhood cancer (Table 1) and those conducted in
Canada, United Kingdom, France, and elsewhere have
provided several leads and suggestive associations with
factors such as infections, parental occupational expo-
sures, medication use, pregnancy and birth conditions,
diet, and pesticides (3). To sort out these findings and
advance knowledge, a new generation of focused and
sophisticated studies is needed. These studies require
systematically identified cases, acquisition of diverse
biological specimens, precise exposure assessment, and
a feasible and valid comparison group. As we have
described, the COG Epidemiology Steering Committee
has several initiatives to address some of these issues.
Other investigations, such as the Northern California
Childhood Leukemia Study (6, 14) and the United
Kingdom Childhood Cancer Study (15), have taken up
the challenge to develop and implement new studies to
overcome previous limitations. It is only through these
collaborative efforts that we will begin to unlock the
etiology of these important cancers.

References
1. Ries LA, Eisner MP, Kosary CL, et al. SEER cancer statistics review,
2. Pledger SE, Peterson LR. Childhood cancer, heredity, and the environ-
ment. In: Pizzo P, Poplack DG, editors. Principles and practice of
among children and adolescents: United States SEER Program 1975–
Program; 1999.
4. Ross JA, Severson RK, Pollock BH, Robison LL. Childhood cancer in
the United States. A geographical analysis of cases from the Pediatric
rates among control subjects in case-control studies. Ann Epidemiol
6. Ma X, Buffler PA, Layebsky M, Does MB, Reynolds P. Control
selection strategies in case-control studies of childhood diseases. Am
7. Ross JA, Spector LG, Olshan AF, Bunin GR. Invited commentary:
birth certificates—a best control scenario? Am J Epidemiol 2004;159:
922–4; discussion 925.
8. Buck GM, Michalek AM, Chen CJ, Nasca PC, Baptiste MS. Perinatal
factors and risk of neuroblastoma. Paediatri Perinat Epidemiol 2001;
15:47–53.
9. Infante-Rivard C, Krajnovic M, Labuda D, Sinnett D. Childhood
acute lymphoblastic leukemia associated with parental alcohol con-
sumption and polymorphisms of carcinogen-metabolizing genes.
genes encoding drugs and xenobiotic metabolizing enzymes, DNA
repair enzymes, and response to treatment of childhood acute lym-
11. Krajnovic M, Sinnett H, Richer C, Labuda D, Sinnett D. Role of
NQO1, MPO and CYP2E1 genetic polymorphisms in the suscepti-
bility to childhood acute lymphoblastic leukemia. Int J Cancer 2002;
Greaves MF. A lack of a functional NAD(P)H:quinone oxidoreduc-
tase allele is selectively associated with pediatric leukemias that have
MLL fusions. United Kingdom Childhood Cancer Study investiga-
types, genetic susceptibility, and outcome of therapy in childhood
14. Ma X, Buffler PA, Selvin S, et al. Daycare attendance and risk of child-
15. UK Childhood Cancer Study Investigators. The United Kingdom
Childhood Cancer Study: objectives, materials and methods. Br
Pediatric Cancer in the United States: The Children's Oncology Group Epidemiology Research Program

Julie A. Ross and Andrew F. Olshan

Updated version
Access the most recent version of this article at:
http://cebp.aacrjournals.org/content/13/10/1552

Cited articles
This article cites 10 articles, 1 of which you can access for free at:
http://cebp.aacrjournals.org/content/13/10/1552.full#ref-list-1

Citing articles
This article has been cited by 1 HighWire-hosted articles. Access the articles at:
http://cebp.aacrjournals.org/content/13/10/1552.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.