Null Results in Brief

No Association Between Genetic Polymorphisms of CYP1A1, GSTM1, GSTT1, GSTP1, NAT2, and Nasopharyngeal Carcinoma in Taiwan

Yu-Juen Cheng, Yin-Chu Chien, Allan Hildesheim, Mow-Ming Hsu, I-How Chen, Jerry Chuang, Julia Chang, Yunglin D. Ma, Cheng-Tai Luo, Wan-Lun Hsu, Helen Hui-Hsin Hsu, Hsin Huang, Jing-Fen Chang, Chien-Jen Chen,1 and Czau-Siung Yang

Graduate Institute of Epidemiology, College of Public Health [Y.-C. C., Y.-C. C., J. Chu., J. Chu., Y. D. M., C.-T. L., W.-L. H., H.-H. H., H.-H. H., J.-F. C., C.-J. C.], Graduate Institute of Microbiology [C.-S. Y.], and Department of Otolaryngology [M.-M. H.], College of Medicine, National Taiwan University, Taipei, 100 Taiwan; Department of Otolaryngology, Mackay Memorial Hospital, Taipei, 100 Taiwan [J.-H. C.]; and the Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, 20892 [A. H.]

Introduction

NPC2 is rare in most populations around the world but common in southern China and Southeast Asia. Both genetic and environmental factors are purported to account for the development of NPC. Many Phase I and Phase II enzymes get involved in the metabolism of carcinogens. Some of these enzymes are polymorphic in genotypes that show considerable variation in their activities, which, in turn, determine individual susceptibility to cancer risk (1). No studies to date have examined simultaneously the association between genetic polymorphisms of multiple xenobiotic-metabolizing enzymes and NPC. We have previously reported an association between genetic polymorphism in the CYP2E1 gene and risk of NPC (2). In this study, we examine the association with NPC of genetic polymorphisms of CYP1A1, GSTM1, GSTT1, GSTP1, and NAT2.

Materials and Methods

Study Subjects. The detailed methods of this case-control study have been fully described elsewhere (2). In brief, incident NPC cases were recruited between July 15, 1991, and December 31, 1994, from two teaching hospitals in Taipei, Taiwan. All cases were newly diagnosed, histologically confirmed with NPC, <75 years old of age, and residing in Taipei city or county for at least 6 months. We identified 378 eligible cases. Controls were individually matched with cases on age (within 5 years), sex, and district/township of residence by using the National Household Registration System. A total of 375 cases (99%) and 327 controls (88%) consented to a detailed interview without a matched pair. Cases had a slightly higher proportion of cancer risk (1). No studies to date have examined simultaneously the association between genetic polymorphisms and NPC after controlling for age, sex, and other potential founders. All statistical significance levels were determined by two-tailed tests. Conditional logistic regression models were not chosen to avoid loss of information from cases and controls without a matched pair. Cases had a slightly higher proportion of Fukkienese ethnicity and lower educational levels than controls. Adjustment for ethnicity and educational level did not alter our findings. This study had at least 80% power to detect a relative risk ≥ 1.5 for each of the genes evaluated.

Results

Frequency distributions of CYP1A1, GSTM1, GSTT1, GSTP1, and NAT2 genotypes and their association with NPC risk are shown in Table 1. No associations with NPC risk were observed for genetic polymorphisms of GSTM1, GSTT1, GSTP1, and NAT2. We further stratified by anti-EBV antibodies, oc-
ocupational exposure to wood dust and formaldehyde, and dietary nitrosamine intake; no significant associations of the genotypes examined with NPC risk were noted (data not shown). The frequencies of the CYP1A1 m1 allele among cases and controls were 0.65 and 0.6, respectively. The GSTP1a allele frequencies were 0.69 among cases and 0.85 among controls.

Discussion

We previously reported a 2.6-fold (95% CI = 1.2–5.7) increased risk of NPC among individuals homozygous for a variant form of CYP2E1 detected by Rsal digestion (the c2 allele). This motivated us to evaluate genotypes of other Phase I and II metabolizing enzymes. No association with risk of NPC was noted in our study, however, when genotypes of CYP1A1, GSTM1, GSTT1, GSTP1, and NAT2 were evaluated. In one previous study among 83 NPC cases and 114 controls (7), the GSTM1 null genotype was associated with a marginally significant 1.9-fold (95% CI = 1.0–3.3) increase in NPC risk. Discrepancies with respect to risk associated with the GSTM1 null genotype between this study and that by Nazar-Stewart et al. (7) could be attributable to chance or to true differences in the two populations studied. Most subjects in the study by Nazar-Stewart et al. (7) were Caucasian, and the predominant histological type of NPC was squamous cell carcinoma. In contrast, in our study, all participants were of Chinese descent and the majority of NPC cases were nonkeratinizing or undifferentiated carcinomas.

References


No Association Between Genetic Polymorphisms of CYP1A1, GSTM1, GSTT1, GSTP1, NAT2, and Nasopharyngeal Carcinoma in Taiwan

Yu-Juen Cheng, Yin-Chu Chien, Allan Hildesheim, et al.


Updated version
Access the most recent version of this article at:
http://cebp.aacrjournals.org/content/12/2/179

Cited articles
This article cites 6 articles, 2 of which you can access for free at:
http://cebp.aacrjournals.org/content/12/2/179.full#ref-list-1

Citing articles
This article has been cited by 4 HighWire-hosted articles. Access the articles at:
http://cebp.aacrjournals.org/content/12/2/179.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.