Polio Vaccination and Risk of Brain Tumors in Adults: No Apparent Association

Alina V. Brenner, Martha S. Linet, Robert G. Selker, William R. Shapiro, Peter M. Black, Howard A. Fine, and Peter D. Inskip

Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland [A. V. B., M. S. L., P. D. I.]; Division of Neurosurgery, Western Pennsylvania Hospital, Pittsburgh, Pennsylvania [R. G. S.]; Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona [W. R. S.]; Brigham and Women’s Hospital, Boston, Massachusetts [P. M. B.]; and Neurooncology Branch, National Cancer Institute, Bethesda, Maryland [H. A. F.]

Introduction

There is a concern that massive vaccination against polio between 1954 and 1962 in the United States might have resulted in the unintentional exposure of millions of people to SV40 through contaminated vaccines (1). The long-term health effects of such exposure are still being debated (1–3). SV40 DNA sequences reportedly have been identified in several rare types of human tumors (1, 3), including those of the brain (2), and SV40 has been shown to transform a variety of cell types in vitro and in vivo (1, 3). However, epidemiological evidence of oncogenicity in humans is inconclusive. Previous epidemiological studies largely failed to demonstrate an association between vaccine-related exposure to SV40 and subsequent cancer development (4, 5), although several studies could not rule out the possibility of an increase in certain subtypes of brain tumors (6, 7). Most of these studies had a cohort design that was not optimal for the study of rare cancers because of the limited statistical power of even very large cohorts. In addition, very few of the earlier studies had long enough follow-up to allow for a long cancer induction period. Here, we test the hypothesis that polio vaccination during the early years of its use increased the risk of brain tumors, particularly glioma, using data from a large case-control study of adult brain tumors conducted in the United States between 1994 and 1998, more than 30 years after the period in which contaminated vaccine may have been given.

Materials and Methods

Details of this study were described previously (8). Briefly, cases were adult patients (mean age at diagnosis = 52 years) with incident, histologically confirmed glioma (n = 489), meningioma (n = 197), or acoustic neuroma (n = 96). They were diagnosed between June 1994 and August 1998 at three United States hospitals [Brigham and Women’s Hospital (Boston, MA), St. Joseph’s Hospital and Medical Center (Phoenix, AZ), and Western Pennsylvania Hospital (Pittsburgh, PA)]. Controls were selected from patients admitted to the same hospitals for a variety of nonmalignant conditions and frequency-matched to the total case series (1:1 ratio) by age (10-year intervals), sex, race/ethnicity, and distance of residence from the hospital (the latter to control for differences in referral patterns). All study participants were queried about history of polio vaccination, including year and vaccination route. We also include results for self-reported vaccination by year of birth. Because most people were vaccinated for polio as infants or young children, year of birth serves as a surrogate for possible exposure to contaminated versus uncontaminated vaccine (4). Information on sociodemographic characteristics and other possible risk factors also was collected. Unconditional logistic regression models were fitted to estimate ORs and compute 95% CIs and likelihood-ratio tests. This study had 95% power to detect an OR of 2.0 for glioma associated with polio vaccination during the 1954–1962 period (two-sided test of significance, α = 0.05).

Results

Table 1 presents ORs for the risk of brain tumors associated with self-reported history of polio vaccination. There was little evidence of an association between any type of tumor and history of polio vaccination, particularly for glioma and meningioma. The ORs for acoustic neuroma, adjusted for education, were nonsignificantly increased for early vaccination and birth year prior to 1940. For glioma, the ORs for polio vaccination varied little by sex, age at tumor diagnosis, histological subtype (astrocytic versus other), or histological grade (high versus low; data not shown). When analyzing the joint effect of vaccine administration route and calendar period of vaccination, there was no meaningful increase in risk of glioma for the 1954–1962 period with either injected (OR, 0.8; 95% CI, 0.5–1.3) or oral vaccine (OR, 1.4; 95% CI, 0.8–2.3). Exclusion of proxy respondents or cases with medical record notation of impaired mental status due to their brain tumor had little effect on the observed ORs. Results were insensitive to whether any of the subgroups of controls with common discharge diagnoses (injuries or diseases of the circulatory, musculoskeletal, or digestive systems) were excluded.

Discussion

In this large hospital-based case-control study, we found no significant associations between history of polio vaccination and risk of adult glioma, meningioma, or acoustic neuroma. Several issues that could have influenced our findings should be considered. History of polio vaccination was ascertained retrospectively and was self-reported. Nondifferential errors in reporting of early childhood events could have obscured a true association, particularly one of modest strength. However, prevalence of self-reported polio vaccination among controls...
Null Results in Brief: Polio Vaccination and Brain Tumors

after vaccination for polio, the only major known source of human
not show convincing evidence of increased risk of brain tumors
previous epidemiological studies, mainly of large cohorts, that did
period when contaminated vaccine was used, which enabled us
some glioma patients, detailed information on many potential
glioma cases), allowance for possible mental impairment in
rates (92% among cases and 86% among controls), a relatively
infancy (4). In our
for birth years 1941–1962, when the majority were exposed to the
SV40, animal experiments suggest a greater risk associated with
injection given during the 1954–1962 period, when they were most likely contaminated, and
for infants born between 1941–1962, when the majority were exposed to the
potentially contaminated vaccine during infancy or early childhood, were around unity. However, whether additional sources of
SV40 exposure might exist and contribute to risk remains unknown, as does the possible existence of modifying factors that
influence individual susceptibility (1). To clarify the etiological
significance of SV40 exposure in human tumorigenesis, future epidemiological studies should incorporate new genetic and sero-
markers of previous SV40 exposure.

References

1. Shah, K. V. Does SV40 infection contribute to the development of human
4. Strickler, H. D., and Goedert, J. J. Exposure to SV40-contaminated poliovirus
8. Inskip, P. D., Tarone, R. E., Hatch, E. E., Wilcosky, T. C., Shapiro, W. R.,

Table 1 Association between self-reported history of polio vaccination and risk of glioma, meningioma, and acoustic neuroma among patients from hospitals in Boston, Phoenix, and Pittsburgh, United States, 1994–1998

<table>
<thead>
<tr>
<th>Condition</th>
<th>Controls “(N = 799)”</th>
<th>Cases “(N = 489)”</th>
<th>OR“</th>
<th>95% CI</th>
<th>Cases “(N = 197)”</th>
<th>OR“</th>
<th>95% CI</th>
<th>Cases “(N = 96)”</th>
<th>OR“</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polio vaccination</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>102</td>
<td>65</td>
<td>1.00</td>
<td>0.75–1.56</td>
<td>33</td>
<td>1.00</td>
<td>0.68–1.82</td>
<td>8</td>
<td>1.00</td>
<td>0.63–3.38</td>
</tr>
<tr>
<td>Yes</td>
<td>614</td>
<td>361</td>
<td>1.08</td>
<td>0.75–1.56</td>
<td>153</td>
<td>1.10</td>
<td>0.68–1.82</td>
<td>79</td>
<td>1.46</td>
<td>0.63–3.38</td>
</tr>
<tr>
<td>Route</td>
<td></td>
</tr>
<tr>
<td>Oral</td>
<td>201</td>
<td>144</td>
<td>1.33</td>
<td>0.89–2.00</td>
<td>59</td>
<td>1.22</td>
<td>0.70–2.12</td>
<td>32</td>
<td>1.55</td>
<td>0.64–4.00</td>
</tr>
<tr>
<td>Injection</td>
<td>276</td>
<td>121</td>
<td>0.77</td>
<td>0.51–1.16</td>
<td>57</td>
<td>0.90</td>
<td>0.52–1.57</td>
<td>30</td>
<td>1.37</td>
<td>0.56–3.38</td>
</tr>
<tr>
<td>Both</td>
<td>56</td>
<td>43</td>
<td>1.38</td>
<td>0.81–2.36</td>
<td>14</td>
<td>1.03</td>
<td>0.47–2.11</td>
<td>4</td>
<td>0.62</td>
<td>0.19–2.24</td>
</tr>
<tr>
<td>Year of vaccination</td>
<td></td>
</tr>
<tr>
<td><1954</td>
<td>154</td>
<td>94</td>
<td>1.05</td>
<td>0.68–1.63</td>
<td>49</td>
<td>1.10</td>
<td>0.62–1.96</td>
<td>28</td>
<td>1.90</td>
<td>0.80–5.15</td>
</tr>
<tr>
<td>1954–1962</td>
<td>223</td>
<td>133</td>
<td>1.08</td>
<td>0.71–1.66</td>
<td>53</td>
<td>0.95</td>
<td>0.53–1.70</td>
<td>33</td>
<td>1.30</td>
<td>0.54–3.41</td>
</tr>
<tr>
<td>1963+</td>
<td>164</td>
<td>95</td>
<td>1.26</td>
<td>0.78–2.05</td>
<td>32</td>
<td>1.58</td>
<td>0.79–3.18</td>
<td>7</td>
<td>0.69</td>
<td>0.20–2.33</td>
</tr>
<tr>
<td>Year of birth</td>
<td></td>
</tr>
<tr>
<td><1940</td>
<td>184</td>
<td>132</td>
<td>1.15</td>
<td>0.77–1.72</td>
<td>62</td>
<td>1.19</td>
<td>0.71–2.02</td>
<td>31</td>
<td>1.94</td>
<td>0.84–4.94</td>
</tr>
<tr>
<td>1941–1962</td>
<td>321</td>
<td>172</td>
<td>0.93</td>
<td>0.57–1.53</td>
<td>82</td>
<td>0.94</td>
<td>0.49–1.84</td>
<td>42</td>
<td>0.75</td>
<td>0.28–2.16</td>
</tr>
<tr>
<td>1963+</td>
<td>109</td>
<td>57</td>
<td>1.02</td>
<td>0.55–1.88</td>
<td>9</td>
<td>0.76</td>
<td>0.26–2.16</td>
<td>6</td>
<td>1.02</td>
<td>0.24–4.36</td>
</tr>
</tbody>
</table>

a Numbers may not add up to column totals because of missing data.
b The high-grade glioma cases (N = 354) include 241 patients diagnosed with glioblastoma (236) or gliosarcoma (5), 70 patients diagnosed with anaplastic astrocytoma, 25 patients diagnosed with anaplastic oligodendroglioma or mixed glioma, 9 patients diagnosed with embryonal tumors, 3 patients diagnosed with anaplastic ependymomas, and 6 others. The low-grade gliomas (N = 135) include 46 oligodendrogliomas, 34 astrocytomas, 17 gangliogliomas, 14 mixed glomas, 7 ependymomas, 4 neurocytomas, and 13 others.

ORs were adjusted for matching factors.
95% CIs were computed using profile likelihood function.
ORs were adjusted for matching factors and education as indicated in Ref. 8.

The high-grade glioma cases (N = 354) include 46 oligodendrogliomas, 34 astrocytomas, 17 gangliogliomas, 14 mixed gliomas, 7 ependymomas, 4 neurocytomas, and 13 others. The high-grade glioma cases (N = 354) include 241 patients diagnosed with glioblastoma (236) or gliosarcoma (5), 70 patients diagnosed with anaplastic astrocytoma, 25 patients diagnosed with anaplastic oligodendroglioma or mixed glioma, 9 patients diagnosed with embryonal tumors, 3 patients diagnosed with anaplastic ependymomas, and 6 others. The low-grade gliomas (N = 135) include 46 oligodendrogliomas, 34 astrocytomas, 17 gangliogliomas, 14 mixed gliomas, 7 ependymomas, 4 neurocytomas, and 13 others.

ORs were adjusted for matching factors.
95% CIs were computed using profile likelihood function.
ORs were adjusted for matching factors and education as indicated in Ref. 8.
Polio Vaccination and Risk of Brain Tumors in Adults: No Apparent Association

Alina V. Brenner, Martha S. Linet, Robert G. Selker, et al.

Updated version
Access the most recent version of this article at:
http://ceb.p.aacrjournals.org/content/12/2/177