Nasopharyngeal Carcinoma and Genetic Polymorphisms of DNA Repair Enzymes XRCC1 and hOGG1

Graduate Institute of Epidemiology, College of Public Health [E-Y. C., Y-J. C., C-J. C.], Department of Otorhinolaryngology [M-M. H.], and Graduate Institute of Microbiology, College of Medicine [M-Y. L., J-Y. C., C-S. Y.], National Taiwan University, Taipei 10018, Taiwan; Department of Otorhinolaryngology, Mackay Memorial Hospital, Taipei, Taiwan [J-H. C.]; Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, 20892 [A. H., L. A. B.]; Westat, Inc., Rockville, Maryland, [B. F. M.]; School of Public Health and Health Sciences, George Washington University, Washington, DC [P. H. L.]

Abstract
Nitrosamine consumption and polymorphisms in CYP2E1, the product of which is involved in the activation of nitrosamines into reactive intermediates, have been shown to be associated with nasopharyngeal carcinoma (NPC) risk. Given that reactive intermediates created during nitrosamine metabolism are capable of DNA damage, we further hypothesized that differences between individuals in their ability to repair DNA damage might be important in NPC pathogenesis. To evaluate this hypothesis, this study focused on effects of genetic polymorphisms of DNA repair genes hOGG1 and XRCC1 on the development of NPC. We conducted a case-control study to investigate the genotypes of 334 patients with NPC and 283 healthy community controls matched by sex, age, and ethnicity. The PCR-based RFLP assay was used to identify genetic polymorphisms. After adjustment for sex, age, and ethnicity, the odds ratio (OR) of developing NPC for hOGG1 codon 326 genotypes of Ser/Cys and Cys/Cys compared with the Ser/Ser genotype was 1.6 (95% CI, 1.0–2.6). For XRCC1 codon 280 genotypes of Arg/His and His/His compared with the Arg/Arg genotype, the OR was 0.64 (95% CI, 0.43–0.96). Among subjects with putative high-risk genotypes for both hOGG1 and XRCC1, the OR was 3.0 (95% CI, 1.0–8.8). Furthermore, subjects with putative high-risk genotypes for hOGG1, XRCC1, and CYP2E1 had an OR of disease of 25 (95% CI, 3.5–177).

Polymorphisms of the DNA repair genes hOGG1 (codon 326) and XRCC1 (codon 280) are associated with an altered risk of NPC. Carriers of multiple putative high-risk genotypes have the highest risk of developing NPC.

Introduction
NPC has a striking geographic and ethnic distribution, with particularly high rates observed among southeast Chinese and other individuals of Chinese descent (1, 2). NPC is linked to EBV infection (3–7). In addition to EBV, numerous other environmental and host factors have been shown to be associated with the development of NPC (8–15). In particular, long-term cigarette smoking, consumption of salted fish and foods containing nitrosamine or nitrosamine precursors at an early age, and occupational exposure to wood dust have been shown to be consistently associated with this disease. Host factors previously shown to be associated with NPC development include HLA class I and II alleles (likely involved via their regulation of the immunological response to EBV infection) and CYP2E1 gene polymorphisms (likely involved via its modulation of the activation of environmental procarcinogens, including nitrosamines, into reactive intermediates capable of DNA damage; Refs. 2, 16).

Various cellular metabolic processes result in the formation of hydroxyl radicals that can cause oxidative damage to DNA (17). This damage often results in single base changes that can be reversed by BER mechanisms (18, 19). hOGG1 and XRCC1 are two of the enzymes participating in the BER pathway, the DNA repair system involved in the repair of damage resultant from oxidative stress. hOGG1 can recognize and excise 8OxGua, the major form of oxidative DNA damage induced by reactive free radicals (20, 21). XRCC1 complexes with DNA polymerase β via the NH2 terminus domain and with DNA ligase III via a blue ribbon commission on transportation (BRCT) domain to repair nicks or gaps left in the BER pathway (22, 23). XRCC1 has also been shown to be involved in the detection of single strand breaks between incision and ligation, an effect that likely occurs via poly(ADP-ribose) polymerase-dependent and poly(ADP-ribose) polymerase-independent mechanisms (24–26).

Genetic polymorphisms of DNA repair genes have been reported to determine susceptibility to several cancers, including lung, esophageal, bladder, and nonmelanoma skin cancers (19, 27–31). No studies, to date, have examined the association between genetic polymorphisms in DNA repair genes and NPC. In this study, we describe results from a case-control study (334 NPC cases; 283 community controls) conducted in Taiwan in which polymorphisms in the hOGG1 (codon 326) and XRCC1 (codons 280 and 399) genes are investigated. We were moti-

Received 1/27/03; revised 6/13/03; accepted 6/23/03.
The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 Supported by the National Science Council Grant NSC89-2314-B-002-427.
2 To whom requests for reprints should be addressed, at Graduate Institute of Epidemiology, College of Public Health, National Taiwan University, Room 1552, 1 Jen-Ai Road Section 1, Taipei 10018, Taiwan. E-mail: chengtwu@ha.mc.ntu.edu.tw.

The abbreviations used are: NPC, nasopharyngeal carcinoma; hOGG1, human 8-oxoguanine DNA glycosylase; XRCC1, X-ray repair complementing defective BER, base excision repair; 8OxGua, 8-hydroxyguanine; OR, odds ratio; CI, confidence interval.
vated to evaluate DNA repair mechanisms by previous results from our case-control study, suggesting that exposure to nitro-
samines and nitrosamine precursors from various sources (diet
and cigarette smoking) is associated with NPC development
and that polymorphisms in the \(CYP2E1 \) gene (a gene respon-
sible for the activation of nitrosoamines and other procar-
cinogens into reactive intermediates capable of inducing DNA
damage) were also associated with disease development (10,
14, 16). We hypothesize that if DNA damage induced via
activation by \(CYP2E1 \) of nitrosoamines and other procarci-
genos is important in the development of NPC, DNA repair
mechanisms should also play an important role in the devel-
opment of this tumor.

Materials and Methods

The methods for case ascertainment and control selection were
described in detail previously (10, 16). In brief, 378 eligible
NPC cases were recruited from July 15, 1991, through Decem-
ber 31, 1994, at two large referral hospitals in Taipei, Taiwan.
For each eligible case subject, we attempted to match one
community control subject by age (5-year groups), sex, and
residence (the same district/township). Ninety-nine percent of
eligible cases (\(n = 375 \)) and 87% of eligible controls (\(n = 327 \))
greeted to a detailed risk factor interview administered by a
trained nurse-interviewer. Blood specimens were obtained from
367 cases and 321 controls. In this study, 334 cases (88% of
eligibles) and 283 controls (75% of eligibles) were included
because DNA from the remaining subjects was exhausted by
previous testing for other factors. No differences were noted
between the 617 subjects included in the present analysis and
the 71 subjects for whom DNA was unavailable for testing,
with respect to gender, ethnicity, education, and smoking. The
71 untested subjects were slightly older than the 617 subjects
included in our study (mean age = 48.5 versus 45.4 years; \(P =
0.04 \)). This study was reviewed and approved by the Institu-
tional Review Boards at the National Cancer Institute and the
National Taiwan University. All participants provided informed
consent.

\(hOGG1 \) genotyping was performed using a PCR-RFLP
 technique. The primers used to identify the polymorphism at
codon 326 of \(hOGG1 \) were as follows: forward, 5′-CTGTA-
CTCAAGGCCTC-3′ and reverse, 5′-GGAAGGTGCT-
TGGGGTAAT-3′. A 40-μl reaction mixture containing 29.71 μl
of double-distilled water, 10× PCR buffer (4 μl), 1 μl of each
primer (5 μM/μl), 1 μl of the mixture of deoxynucleoside
triphosphates (2.5 μM/μl), 1.2 μl of MgCl₂ (50 mM/μl), and 0.45 unit (5 unit/μl) of TaqDNA
polymerase (Amersham Pharmacia Biotech) was used. The
PCR condition was initiated by a 4-min denaturation step at
94°C, followed by 35 cycles at 94°C for 40 s, 55/57°C for 30 s,
72°C for 40 s, and a final step at 72°C for 10 min. The PCR
products were subjected to restriction digestion overnight at
37°C by Rsal for codon 280 and by MspI for codon 399. The
digestion products were resolved on 2.5% agarose gels. Two
bands at 126 and 62 bp characterize the wild-type Arg allele
for codon 280; a single band at 188 bp characterizes the variant
type His allele. Two bands at 115 and 34 bp characterize the
wild-type Arg allele for codon 399; a single band at 149 bp
characterizes the variant type Gln allele.

An 8% masked, random sample (\(n = 51 \)) of subjects was
tested in replicate. Three (%) masked duplicates had discord-
ant results after genotyping; these discrepancies were resolved
by repeat testing. The statistical analysis of our data were
performed using the SAS statistical software (SAS, Cary, NC).
The ethnic-specific genotype distribution for each of the poly-
morphisms evaluated was compared using Pearson’s \(\chi^2 \)
test (32). Using a goodness-of-fit test, we compared the observed
and expected genotype counts and computed the \(\chi^2 \) statistic as
a measure of the deviation from Hardy-Weinberg equilibrium
(33). Unconditional logistic regression models were used to
estimate the OR and 95% CI of disease associated with genetic
polymorphisms (32, 34, 35). Unconditional logistic regression
was chosen over conditional logistic regression to avoid losses
of cases and controls without a matched pair. Both unadjusted
OR estimates and OR estimates adjusted for age, gender, and
ethnicity are presented. Additional adjustment for other risk
factors associated with NPC in our population (e.g., cigarette
smoking, family history of NPC, dietary nitrosamine consump-
tion during childhood, HLA alleles, and occupational exposure
to wood dust) did not affect the results (data not shown). Trend
tests were performed by including the categorical variable of
interest as a continuous variable in the logistic variable and
assessing departure of the resultant \(\beta \) coefficient from 0.

Results

Three-hundred thirty-four cases and 283 controls are in-
cluded in this analysis. The average age of cases and controls
was 45.3 and 45.6, respectively. The gender ratio for both
cases and controls was ~2:1. Ethnically, 81.7% of cases and
70.9% of controls were of Fukienese origin; 8.4% of cases and
6.4% of controls were of Hakka origin; the remaining
9.9% of cases and 22.7% of controls were of Cantonese,
Aboriginal, or other Han origin (\(P = 0.001 \)). A total of
42.2% of cases and 30.1% of controls reported less than a
junior high school education; 41.1% of cases and 51.1% of
controls reported higher than a senior high school education
(\(P = 0.04 \)). Other relevant risk factors reported from this
population include most notably >25 years of cigarette
smoking (OR, 1.7; 95% CI, 1.1–2.9) and homozygosity for
the \(CYP2E1 \) Rsal c2 variant allele (OR, 2.6; 95% CI, 1.2–
5.7; Refs. 10, 16).

We first investigated whether there was evidence for het-
erogeneity in genotype distributions or allele frequencies by
ethnicity in our study (Table 1). All distributions were in
Hardy-Weinberg equilibrium. No significant differences were
noted for the three polymorphisms examined when individuals
of Fukienese, Hakka, and other ethnic origins were compared
among our community controls. For \(XRCC1 \) codon 280, how-
ever, there was a suggestion that the \(His \) variant allele fre-
frequency was lower (0.03) among the small group (n = 18) of individuals of Hakka descent compared with Fukienese or other Chinese ethnic groups (0.14 and 0.11, respectively). Because no significant differences were noted between the vast majority of individuals in our study (77%) of Hakka descent compared with Fukienese or other Han origins.

Next, we examined the association between hOGG1 and XRCC1 polymorphisms and NPC (Table 2). After adjusting for gender, age, and ethnicity, the OR for NPC associated with the Cys/Cys or Ser/Cys genotypes combined compared with the Ser/Ser genotype was 1.6 (95% CI, 1.0–2.6). The adjusted OR for NPC associated with XRCC1 codon 280 genotypes His/His or Arg/His combined compared with the Arg/Arg genotype was 0.64 (95% CI, 0.43–0.96). No significant association was observed between XRCC1 codon 399 polymorphism and NPC.

Table 3 presents results of the analysis that evaluated the joint effect of polymorphisms at hOGG1 codon 326 and XRCC1 codon 280. For simplicity, we considered as the referent group for this analysis carriers of the genotypes found to be at lowest risk of disease (i.e., Ser/Ser for hOGG1 and Arg/His/His for XRCC1). As shown in the table, individuals who carried only one of the two polymorphisms associated with NPC risk (i.e., hOGG1 Ser/Cys-Cys/His or XRCC1 Arg/Arg) were at an ∼2-fold increased risk of NPC, whereas individuals who carried both putative risk genes had an OR of 3.0 (95% CI, 1.0–8.8).

Because individuals homozygous for an allele of the CYP2E1 gene that is detected by RsaI digestion (c2 allele) were previously found to have an increased risk of NPC in our study (OR, 2.6; 95% CI, 1.2–5.7; Ref. 16), we next examined the joint effect of polymorphisms in the CYP2E1, hOGG1, and XRCC1 genes on NPC risk. A clear dose response of increasing risk with increasing number of putative genes was observed (P trend = 0.001). Relative to carriers of none of the three putative high-risk genes, carriers of one putative high-risk gene had an OR of 3.0 (95% CI, 0.78–11.1), carriers of two putative high-risk genes had an OR of 9.7 (95% CI, 2.3–39.1), and carriers of all three putative high-risk genes had an OR of 29 (95% CI, 5.9–150).
risk alleles had an OR of 4.3 (95% CI, 1.2–16.0), and carriers of all three putative high-risk genotypes had an OR of 25 (95% CI, 3.5–177). Adjustment for age, gender, and ethnicity did not materially alter these estimates.

Discussion

Limitations of the present study include the modest sample size that reduced our ability to evaluate gene-gene interactions and the 6% genotyping error rate observed among the 8% random sample selected for blind duplicate testing. Despite these limitations, results from this study support a role of DNA repair enzymes in the etiology of NPC. In our study of 334 patients diagnosed with NPC and 283 health community controls, we observed associations with NPC for polymorphisms in both the hOGG1 and XRCC1 DNA repair genes. For the hOGG1 gene, an OR of 1.6 was observed among individuals with Cys/Cys or Ser/Cys genotypes. For the XRCC1 gene, an OR of 0.64 was observed among individuals with Arg/His or His/His genotypes, whereas no association with disease was noted for polymorphisms at codon 399 of XRCC1. Interestingly, individuals with putative risk genes for both hOGG1 (Cys/Cys or Ser/Cys) and XRCC1 (Arg/Arg) were at 3-fold increased risk of NPC. Furthermore, when we evaluated individuals who had both putative DNA repair risk genes and who were also carriers of the high-risk 280 forms of the XRCC1 gene, and epidemiological studies that have evaluated the association between polymorphisms at this codon of XRCC1 and disease for tumors other than NPC have had conflicting results (28, 30, 42). The results from our study should therefore be interpreted with caution until our findings are reproduced and/or biological support for the observed association is obtained.

In summary, we observe associations between polymorphisms in two DNA repair genes, hOGG1 and XRCC1, and NPC risk. The association was stronger for individuals who carried both putative risk genes (OR, 3) and strongest for the subset of individuals who also were carriers of the high-risk 280 allele of CYP2E1. This is the first study to focus on the association between genetic polymorphisms in DNA repair genes and NPC risk. In the future, polymorphisms in this and other DNA repair genes should be studied to confirm or refute the involvement of DNA repair mechanisms in the etiology of NPC.

Acknowledgments

We thank the efforts of the study nurses, technicians and coordinators in Taiwan (Pei-Ling Chan, Hsiu-Yen Chang, Ya-Ting Chang, Shu-I Chao, Ching-Fen Chen, Hsiu-Chien Chen, Hsiu-Ling Chen, Kuo-Szu Chuang, Yin-Chu Chien, Hsiu-Mei Cho, Ching-Chi Chu, Tsuen-Tze Dan, Fung-Yuan Hsu, Hsu-Rhu Hou, Yun-Peng Huang, Ji-Huei Lin, Pei-Hsi Lin, Yu-Shun Lin, De-Hwei Lin, Wen-Ling Liu, Shu-Mei Peng, Hwei-Chen Teng, Cher-Tsung Wu, Shi-Yi Yang, and Pei-Chen Yen) and the contribution made by individuals from Westat, Inc. (David Downes, Brenda Sun, Jeanne Rosenthal and Erika Wilson) and Winnie Rickert of Information Management Services, Inc. We also thank Dr. Hon-Hsin Lee for support throughout the project.

References

1104 XRCC1, hOGG1, and Nasopharyngeal Carcinoma

Nasopharyngeal Carcinoma and Genetic Polymorphisms of DNA Repair Enzymes XRCC1 and hOGG1

Updated version Access the most recent version of this article at: http://cebp.aacrjournals.org/content/12/10/1100

Cited articles This article cites 35 articles, 14 of which you can access for free at: http://cebp.aacrjournals.org/content/12/10/1100.full.html#ref-list-1

Citing articles This article has been cited by 32 HighWire-hosted articles. Access the articles at: /content/12/10/1100.full.html#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.