Androgenetic Alopecia and Prostate Cancer: Findings from an Australian Case-Control Study

Graham G. Giles, 2 Gianluca Severi, Rod Sinclair, Dallas R. English, Margaret R. E. McCredie, Warren Johnson, Peter Boyle, and John L. Hopper

The purpose of this study was to examine the relationship between androgenetic alopecia (AA) and prostate cancer with particular emphasis on early age at diagnosis and higher grade tumors. We conducted an age-stratified, population-based case-control study in Australia of men who were diagnosed before 70 years of age during 1994–1997 with histopathology-confirmed adenocarcinoma of the prostate, excluding well-differentiated tumors. Controls were selected from the electoral rolls, and the frequency was matched on age. After excluding subjects with missing values, the analysis was based on 1446 cases and 1390 controls of whom direct observations were made of their pattern of AA during face-to-face interviews. Our data suggest an association between prostate cancer and vertex baldness; compared with men who had no balding, the adjusted odds ratio (OR) was 1.54 (1.19–2.00). No associations were found between prostate cancer and frontal baldness or when frontal baldness was present concurrently with vertex baldness. The ORs were 0.98 (0.79–1.23) and 1.14 (0.90–1.45), respectively. The highest ORs were for high-grade disease in men 60–69 years of age: 1.80 (1.02–3.16) for frontal baldness; 2.91 (1.59–5.32) for vertex baldness; and 1.95 (1.10–3.45) for frontal and vertex baldness. This association between the pattern of AA and prostate cancer points to shared androgen pathways that are worthy of additional investigation.

Introduction
One important characteristic of prostate cancer is its rapid increase with age. Male pattern baldness, AA, 3 is also strongly age dependent and, similar to prostate cancer, is considered to be androgen dependent (1, 2).

Androgens exert their effects by binding to a single cytoplasmic AR, and their potency is determined by the binding affinity to the AR, with DHT binding five times more strongly than T (2). The enzyme 5αR converts T to its active form, DHT. DHT is implicated not only in the development of benign prostatic hypertrophy but also in the pathogenesis of prostate cancer (3, 4). Isozymes of 5αR are differentially expressed in tissues; 5αR-1 is expressed in the skin, sebaceous glands, liver, adrenal, and kidney, whereas 5αR-2 is expressed in the prostate, testes, seminal vesicles, liver, and hair follicles (5, 6). Inherited deficiency of 5αR-2 leads to absence of AA and a small prostate (7). Finasteride, a 5αR inhibitor with little 5αR-1 activity, has been useful in the treatment of AA and benign prostatic hypertrophy (8, 9). Finasteride down-regulates expression and secretion of PSA (10), but its short-term use in the chemoprevention of prostate cancer, benign prostatic hypertrophy, and elevated PSA has not been successful (11), and long-term use is still subject to trial (12). Studies that have specifically addressed the question of whether AA is associated with prostate cancer are few and have produced inconsistent findings (13–17). We examined associations of AA with early-onset, moderate- to high-grade prostate cancer in a large case-control study (18). The main thrust of the case-control study was to examine lifestyle associations with the diagnosis of “clinically important” prostate cancer. To this end, we excluded tumors that were well differentiated (low grade or Gleason score ≤ 3). We also focused on early-onset cancers because we were interested in finding factors relevant to the prevention of prostate cancer in men before the age of 70.

Materials and Methods
We carried out an age-stratified, population-based case-control study of prostate cancer in Melbourne, Sydney, and Perth, Australia (18). The subjects were residents of the three cities’ metropolitan areas. Prior approval of the study protocol was obtained from all relevant hospital and cancer registry human research ethics committees in Victoria, New South Wales, and Western Australia.

Eligible cases comprised all male residents of Melbourne,
Sydney, and Perth diagnosed from 1994 to 1997 and recorded in the population-based cancer registries with a histopathology-confirmed diagnosis of adenocarcinoma of the prostate (International Classification of Diseases, 9th revision, rubric 185), excluding well-differentiated tumors (defined as low grade, i.e., those with Gleason scores <5). Cases had to be <70 years of age at diagnosis and also had to be registered to vote on the state electoral rolls (adult registration to vote is compulsory in Australia). Meeting this criteria, all cases diagnosed before the age of 60 years were included, and random samples of 50% of cases diagnosed at 60–64 years of age and 25% of cases diagnosed at 65–69 years of age were selected, with the proportions varying over time to fit interview quotas.

Controls were randomly selected from men on the current state electoral rolls and were frequency matched to the predicted age distribution of the cases in a ratio of one control per case. Potential controls were matched against the cancer registries at the time of recruitment to exclude men with a known history of prostate cancer. Controls were identified and interviewed contemporaneously with the cases over the period 1994 to 1997. During the course of this study, 3 controls were subsequently diagnosed with prostate cancer and were selected as eligible cases. These subjects are included as cases and as controls.

After seeking advice from the case subjects’ urologists, from whom some clinical details were sought, we wrote to each subject inviting him to participate. We wrote to the control subjects directly. Face-to-face interviews were arranged, usually at the man’s home. A structured interview schedule was used to obtain information on lifestyle exposures and personal attributes. While the subject was completing a sexual history questionnaire in private, the interviewer scored the subject attributes. While the subject was completing a sexual history used to obtain information on lifestyle exposures and personal attributes. While the subject was completing a sexual history...
combined, the difference between the ORs for high-grade and moderate-grade tumors was not significant ($P = 0.31$).

Discussion

Our analysis suggests a positive association between prostate cancer and vertex baldness that appeared to be more evident for high-grade prostate cancer, especially when diagnosed in men 60–69 years of age. We have considered the extent to which this finding might be attributable to bias or confounding, given the response rates, and the fact that subjects were ascertained during a period of intense PSA testing in the population (20).

With respect to response, in neither cases nor controls could we find an association between either educational status or smoking status (as surrogates for response) with AA (data not shown). The association between prostate cancer and AA was at least as strong for high-grade prostate cancer as for moderate-grade prostate cancer, suggesting that PSA testing, which identifies large numbers of moderate-grade tumors (20), cannot explain the difference. Furthermore, we believe it is implausible that vertex balding would be associated with PSA testing, and although the interviewers were often not blind to the case-control status of subjects, they were not informed of any hy-

Table 1 Demographic characteristics of cases and controls

	Cases	Controls	Controls
	Total§	Moderate grade§	High grade §
	n	%	n
Age group			
<$55	231	16.0	186
55–59	405	28.0	317
60–64	359	24.8	261
65–69	451	31.2	324
Country of birth			
Australia	1001	69.2	766
Not Australia	445	30.8	322
Educational level			
Primary only (5–11)	105	7.3	75
Secondary only (11–16)	452	31.3	351
Post secondary training	640	44.3	468
Tertiary	249	17.2	194
Family history			
No first-degree relative affected	1215	84.0	903
Any first-degree relative affected	231	16.0	185
Smoking			
Never	530	36.7	419
Current	197	13.6	147
Former	719	49.7	522

§ Total, 1446.

Table 2 The association between androgenetic alopecia and prostate cancer by tumor grade and reference age

<table>
<thead>
<tr>
<th></th>
<th>All subjects</th>
<th>Moderate grade§</th>
<th>High grade§</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Controls $n = 1390$</td>
<td>Cases $n = 1446$ ORa 95% CIb</td>
<td>Cases $n = 1088$ OR 95% CI</td>
</tr>
<tr>
<td>Alopecia, all ages</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No balding</td>
<td>350</td>
<td>337</td>
<td>1.00</td>
</tr>
<tr>
<td>Frontal</td>
<td>447</td>
<td>438</td>
<td>0.98 (0.79–1.23)</td>
</tr>
<tr>
<td>Vertex</td>
<td>238</td>
<td>310</td>
<td>1.54 (1.19–2.00)</td>
</tr>
<tr>
<td>Frontal and vertex</td>
<td>355</td>
<td>361</td>
<td>1.14 (0.90–1.45)</td>
</tr>
<tr>
<td>Reference age, before 60 years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No balding</td>
<td>210</td>
<td>201</td>
<td>1.00</td>
</tr>
<tr>
<td>Frontal</td>
<td>187</td>
<td>184</td>
<td>1.00 (0.73–1.37)</td>
</tr>
<tr>
<td>Vertex</td>
<td>74</td>
<td>118</td>
<td>1.61 (1.08–2.38)</td>
</tr>
<tr>
<td>Frontal and vertex</td>
<td>113</td>
<td>133</td>
<td>1.15 (0.82–1.61)</td>
</tr>
<tr>
<td>Reference age, 60–69 years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No balding</td>
<td>140</td>
<td>136</td>
<td>1.00</td>
</tr>
<tr>
<td>Frontal</td>
<td>260</td>
<td>254</td>
<td>1.09 (0.77–1.53)</td>
</tr>
<tr>
<td>Vertex</td>
<td>164</td>
<td>192</td>
<td>1.74 (1.20–2.52)</td>
</tr>
<tr>
<td>Frontal and vertex</td>
<td>242</td>
<td>228</td>
<td>1.24 (0.87–1.76)</td>
</tr>
</tbody>
</table>

aAll ORs are adjusted for reference age, study center, calendar year, family history, and country of birth.

bP from likelihood ratio test to remove variable from model based on a χ^2 test with 3 degrees of freedom.

cModerate grade, Gleason scores 5–7; high grade, Gleason scores 8–10.
Baldness and Prostate Cancer

Baldness and Prostate Cancer

Our observation of an increased risk of prostate cancer associated with vertex baldness is consistent with two small case-control studies (13) and one cohort study (14) but not with another cohort study (15) and two hospital-based case-control studies (16, 17). Of those studies not in agreement with ours, the cohort study of Harvard alumni (15) assessed men’s baldness from photographs taken from college yearbooks published 25 years after graduation when former students were in their mid-forties and compared the men who had died from prostate cancer with those who had not. No attempt was made to assess vertex baldness. A hospital-based case-control study (17) conducted in Athens, Greece, on 320 prostate cancer patients and a mix of 246 patients without prostate cancer excluded men with benign prostatic hypertrophy from the controls. This could be problematic, given that AA may be associated with benign prostatic hypertrophy (22) and both are related to 5αR activity (23, 24).

Of the case-control studies in agreement with ours (13), one was a hospital-based study of 78 cases and 71 controls and the other was a community-based study of 56 cases and 74 controls (13). The Hamilton-Norwood scale was used to measure AA (19); subjects were asked to choose pictures that best described their hair pattern at 30 and 40 years of age. The analysis produced consistent but statistically not significant results: an OR for vertex baldness of 2.44 (95% CI, 0.57–10.46); an OR for baldness by age 30 of 2.11 (95% CI, 0.66–6.73); and an OR for baldness by age 40 of 1.37 (95% CI, 0.47–4.06). A follow-up of the first National Health and Nutrition Examination Survey, comparing 214 prostate cancer cases with the remaining 4421 men examined for AA at baseline when 25–75 years of age, found an OR of 1.5 (95% CI, 1.12–2.00) for any form of baldness (14). This estimate has been considered to be possibly attenuated, not only by the lack of specificity of the baldness measurement (they were not able to distinguish vertex baldness) but also by the wide range of ages at which baldness was assessed (25). It is possible that any association with baldness may be stronger in men who become bald at an early age.

A mechanism for the putative relationship between AA and prostate cancer risk is yet to be established. Because both AA and prostate cancer are androgen dependent, differences in androgen metabolism, coactivators of the AR, gene mutations and polymorphisms of the AR, and 5αR genes are all obvious candidates for investigation (26–28). Other candidates for investigation include physiological pathways important to prostate cell differentiation and proliferation, e.g., IGF-1 and the VDR. IGF-1 can lead to aberrant activation of the AR and mediates the perpetuating effects of growth hormone on AA (29). Vitamin D (as 1α,25-hydroxyvitamin D) inhibits prostate cell growth (30), and polymorphic variation in the VDR has been linked to prostate cancer risk (31). 1α,25-Hydroxyvitamin D resistance has been linked to alopecia in humans (32), and VDR knockout mice also develop alopecia (33).

A case-control study of 159 cases and 156 controls found a positive association between free T levels in serum from men with frontal or vertex baldness, compared with men who had only minimal hair loss (16). The association between T (and IGF-1) and AA was also found in a cross-sectional study (34). Associations between prostate cancer and elevated T have been reported in a case-control (35) and a prospective (36) study. In the latter, elevated T levels in blood sampled before diagnosis were associated with increased risk of prostate cancer, especially advanced disease. Other analyses of this cohort study have shown positive associations between IGF-1 and prostate cancer (37) and also between IGF-1 and vertex baldness (38).

It is considered that premature AA is related to high levels of androgens generally and to high DHT levels specifically in the frontal scalp (39), with 5αR-2 playing a central role in the intrafollicular conversion of T to DHT (2). This is supported by the immunohistochemical localization, in cryosections of scalp from men with AA, of 5αR-1 staining within sebaceous glands but not in hair follicles and 5αR-2 staining in the root sheath and the infundibular region of the follicle but not within the dermal papilla or sebaceous glands (40). Others have shown that the outer root sheaths of frontal hair follicles have higher levels of AR, 5αR-1, and 5αR-2 and less aromatase than in occipital follicles (41), and a higher level of AR has been demonstrated in hair follicles from balding skin compared with nonbalding skin (42). Aberrant activation of the AR has been demonstrated in vitro with IGF-1, keratinocyte growth factor, and epidermal growth factor. These agents can directly activate the AR in the absence of androgens and may contribute to the progression of prostate cancer and AA (43, 44). Some consider that prostate cancer risk might be associated with the CAG repeat polymorphism in the AR (11, 27, 28), although we have been unable to detect such an association in our study (data not shown). However, shorter CAG repeat lengths in the AR may affect androgen-mediated gene expression in hair follicles and sebaceous glands (45). Platz et al. (38) and Ellis et al. (46), in comparing men with early-onset AA and older nonbald men, failed to detect any variation in allele, genotype, or haplotype frequencies in the genes encoding 5αR-1, 5αR-2, and insulin, suggesting that these were not associated with early-onset AA. This is not altogether surprising because whole follicle transplantation experiments have demonstrated that each hair follicle is genetically programmed not only to respond, or not respond, to androgens but also in what manner to respond (47). Although the geographical patterning of the hair loss in AA is associated with quantitative differences in androgens and numbers of ARs, these are likely to be secondary phenomena because the hair follicle is able to regulate its own response to androgens by enhancing expression of 5αR and ARs in vitro (48). Genetic control of AA may reside with differentiation/morphogen genes, e.g., genes that code for developmental regulator proteins implicated in the sonic hedgehog signaling pathway or its cognate receptor patched (49). Notably, these genes also play an important role in oncogenic transformation (50).

Acknowledgments

We thank study coordinator Margaret Staples and the research team, Bernadette McCudden, John Connal, Richard Thorowgood, Chris Costa, Melodie Kevan, and Sue Palmer. We thank the many urologists who kindly assisted us by providing information and access to their patients. We also thank the many men who participated.

References

23. Bartsch, G., Rittmaster, R. S., and Klocker, H. Dihydrotestosterone and the
21. Thigpen, A. E., Silver, R. I., Guileyardo, J. M., Casey, M. L., McConnell, J. D.,
and Russell, D. W. Tissue distribution and ontogeny of steroid 5α-reductase
22. Peterson, R. E., Imperato-McGinley, J., Gau-tier, T., and Sturila, E. Male
pseudohyperplasmoduridosis due to steroid 5α-reductase deficiency. Am. J. Med.,
24. Kempf, K. D., Olsen, E. A., Whiting, D., Savin, R., DeVillez, R., Bergfeld,
and Coetzee, G. A. Association of prostate cancer risk with genetic polymor-
phisms in vitamin D receptor and androgen receptor. J. Natl. Cancer Inst. (Bethesda),
alopecia and resistance to 1,25-dihydroxyvitamin D3. Endocrinol., 25: 373–
381, 1986.
26. Sakai, Y., Kishimoto, J., and Demay, M. B. Metabolic and cellular analysis of
27. Signorello, L. B., Wu, J., Hsieh, C. C., Tzonou, A., Trichopoulos, D., and
Manzoor, C. S. Hormones and hair patterning in men: a role for insulin-like
28. Wolé, A., Manzoor, C. S., Anderson, S. O., Bergstrom, R., Signorello,
L. B., Lagniou, P., Adamo, H. O., and Trichopoulos, D. Insulin-like growth factor
29. Gann, P. H., Henneckeys, C. H., Ma, J., Longcope, C., and Stampfer, M. J.
30. Chan, J. M., Stampfer, M. J., Giovannucci, E., Gann, P. H., Ma, J., Wilkin-
son, P., Henneckeys, C. H., and Pollack, M. Plasma insulin-like growth factor 1
and prostate cancer risk: a prospective study. Science (Wash. DC), 279: 563–566,
1998.
balding, plasma insulin-like growth factor 1, and insulin growth factor binding
32. Ellis, J. A., Stebbing, M., and Harrap, S. B. Genetic analysis of male pattern
33. Bayne, E. K., Planagan, J., Einstein, M., Ayala, J., Chang, B., Azzolina,
Whiting, D. A., Mumford, R. A., Thiboutot, D., Singer, I. I., and Harris, G.
Immunohistochemical localization of types 1 and 2 5α-reductase in human scalp.
34. Sawaya, M. E., and Price, V. H. Different levels of 5α-reductase type I and
II, aromatase, and androgen receptor in hair follicles of women and men with
35. Hibberts, N. A., Howell, A. E., and Randall, V. A. Balding hair follicle
dermal papilla cells contain higher levels of androgen receptors than those from
36. Yeh, S., Miyamoto, H., Shima, H., and Chang, C. From estrogen to androgen
receptor: a new pathway for sex hormones in prostate. Proc. Natl. Acad. Sci. USA,
38. Demark-Wahnefried, W., Schildkraut, J. M., Thompson, D., Lesko, S. M.,
Mctytre, L., Schwingel, P., Paulson, D. F., Robertson, C. N., Anderson, E. E.,
and Walther, P. J. Early onset baldness and prostate cancer risk. Cancer Epide-
prostate cancer in the epidemiologic follow-up of the first National Health
2000.
41. Demark-Wahnefried, W., Lesko, S. M., Conaway, M. R., Robertson, C. N.,
androgens: associations with prostate cancer risk and hair patterning. J. Androl.,
42. Hsieh, C. C., Thanos, A., Mitropolis, D., Deliveliotis, C., Manzoros, C. S.,
and Trichopoulos, D. Risk factors for prostate cancer: a case-control study in
Hopper, J. J., and Boyle, P. Smoking and prostate cancer: findings from an
45. Smith, W. R., and Armstrong, B. K. Prostate-specific antigen testing in
Australia and association with prostate cancer incidence in New South Wales.
Ryu, S. B., and Park, Y. I. Association of benign prostatic hyperplasia with male
48. Bartsch, G., Rittmaster, R. S., and Klocker, H. Dihydrotestosterone and the
49. Kantoft, P. W., Fiebo, P. G., Giovannucci, E., Krithivas, K., Dahl, D. M.,
of the 5α-reductase type II gene and its association with prostate cancer: a case-control
50. Demark-Wahnefried, W., and Schildkraut, J. M. Correspondence re: E.
Hawk et al. Male pattern baldness and clinical prostate cancer in the epidemi-
ologic follow-up of the first National Health and Nutrition Examination Survey.
51. Makridakis, N., Ross, R. K., Pike, M. C., Chang, L., Stanczyk, F. Z., Kolonel,
mismatch substitution that modulates activity of prostatic steroid 5α-reductase.