Point/Counterpoint

Point: Myeloperoxidase $^\text{−}463\text{G} \rightarrow \text{A}$ Polymorphism and Lung Cancer Risk1

Anne Feyler, Anu Voho, Christine Bouchardy, Katja Kuokkanen, Pierre Dayer, Ari Hirvonen, and Simone Benhamou2

Unit of Cancer Epidemiology (INSERM U521), Gustave-Roussy Institute, 94805 Villejuif, France [A. F., S. B.]; Department of Industrial Hygiene and Toxicology, Finnish Institute of Occupational Health, 00250 Helsinki, Finland [A. V., K. K., A. H.]; Geneva Cancer Registry, 1205 Geneva, Switzerland [C. B.]; and Division of Clinical Pharmacology, University Hospital, 1211 Geneva, Switzerland [P. D.]

Abstract

Myeloperoxidase (MPO) is released from neutrophils in lung tissue in response to exposure to various pulmonary insults, including tobacco smoking. This enzyme is involved in the activation of an intermediate metabolite of benzo(a)pyrene to the highly reactive benzo(a)pyrene diol epoxide. $^\text{−}463\text{G} \rightarrow \text{A}$ polymorphism in the promoter region of the MPO gene has been identified. The A allele is associated with a decreased transcriptional activity attributable to the disruption of a SP1-binding site. We therefore examined whether carriers of the A allele may be at reduced risk of lung cancer in a case-control study of 150 cases and 172 control individuals, all Caucasian smokers. Relative to subjects with the MPO G/G genotype, a significant decreased risk of lung cancer was found for carriers of the G/A genotype [odds ratio (OR) = 0.5, 95% confidence interval (CI): 0.29–0.88]. A reduction in risk, although not statistically significant, was also observed for subjects with the A/A genotype (OR = 0.84, 95% CI: 0.31–2.32). The lung cancer risk for carriers of one or two copies of the A allele was 0.55 (95% CI: 0.33–0.93). Because of the low prevalence of the A/A genotype, we also performed a meta-analysis of 2686 lung cancer cases and 3325 controls. The summary OR suggested a slight protective effect of the A/A genotype (OR = 0.86, 95% CI: 0.67–1.1), but this finding was strongly influenced by the results of a single large study. The meta-analysis restricted to studies comprising a homogeneous set yielded an OR of 0.68 (95% CI: 0.5–0.93). However, because of the heterogeneity in individual study results, additional large case-control studies are warranted to provide a more definitive conclusion.

Introduction

Several tobacco carcinogens are metabolized via complex enzymatic mechanisms involving both activation and detoxication reactions. Differences in these metabolism pathways are potentially important sources of interindividual susceptibility to cancer development. The MPO3 enzyme is found in primary granules of neutrophils and monocytes and functions as an oxidative antimicrobial agent by catalyzing the generation of genotoxic hypochlorous acid and other reactive oxygen species (1). MPO is released from neutrophils in lung tissue in response to exposure to various pulmonary insults, including tobacco smoke (2, 3). MPO has been shown to activate an intermediate metabolite of $\text{B}(\alpha)\text{P}$, the 7,8 diol $\text{B}(\alpha)\text{P}$, to the highly reactive and carcinogenic $\text{B}(\alpha)\text{P}$ diol epoxide (4) and to enhance the binding of $\text{B}(\alpha)\text{P}$ diol to lung DNA in vitro (5). $^\text{−}463\text{G} \rightarrow \text{A}$ polymorphism in the promoter region of the MPO gene has been identified, and the A allele has been associated with a decreased transcriptional activity attributable to the disruption of a SP1-binding site (6). It is therefore conceivable that carriers of the A allele may be at reduced risk of lung cancer because of reduced ability to convert $\text{B}(\alpha)\text{P}$ to carcinogenic $\text{B}(\alpha)\text{P}$ diol epoxide. To our knowledge, five case-control studies of lung cancer were published previously (7–11), and a protective effect of the A allele was suggested in all studies, except one (11).

We have conducted a hospital-based, case-control study in France to investigate the role of several xenobiotic-metabolizing enzymes, including cytochrome P4501A1 (CYP1A1; Ref. 12) and GSTM1 (13), on smoking-related cancers among Caucasian smokers. In this study, we examined whether polymorphism in the MPO gene is associated with lung cancer. Because CYP1A1 and GSTM1 are also involved in $\text{B}(\alpha)\text{P}$ metabolism, we also examined their potential modifying effect on the relationship between MPO gene polymorphism and lung cancer.

We also present a meta-analysis to summarize our results along with those from other case-control studies, including >6000 individuals.

Materials and Methods

Study Subjects. Details of the study population have been published previously (12). In brief, French Caucasian individuals were recruited between 1988 and 1992 in 10 hospitals, of which 9 were located in Paris. Peripheral blood samples were available for 150 lung cancer cases and 172 controls who fulfilled the criteria described below. Cases were all consecutive patients with histologically confirmed incident squamous or small cell lung cancer. The control group, frequency matched on age, sex, and hospital, consisted of all consecutive Caucasian patients without previous or current malignant diseases. The main medical diagnoses in the control population were rheumatological (33%), mainly lumbago and sciatica (71%), infectious and parasitic (10%), respiratory (9%), cardiovascular

1 Supported by the Swiss Cancer League, Switzerland (KFS1069-09-2000); League against Cancer of Fribourg, Switzerland (FOR381.88); Cancer Research, Switzerland (AKT 617); and Fund for Clinical Research against Cancer, Gustave-Roussy Institute, Villejuif, France (88D28). Anne Feyler had a fellowship from Switzerland (AKT 617); and Fund for Clinical Research against Cancer, Gustave-Roussy, 39 rue Camille Desmoulins, 94805 Villejuif, France. Phone: (33) 1 42 11 41 39; Fax: (33) 1 42 11 53 15; E-mail: simone.benhamou@igr.fr.

2 Supported by the Swiss Cancer League, Switzerland (KFS1069-09-2000); League against Cancer of Fribourg, Switzerland (FOR381.88); Cancer Research, Switzerland (AKT 617); and Fund for Clinical Research against Cancer, Gustave-Roussy Institute, Villejuif, France (88D28). Anne Feyler had a fellowship from the Fondation pour la Recherche Médicale.

3 The abbreviations used are: MPO, myeloperoxidase; $\text{B}(\alpha)\text{P}$, benzo(a)pyrene; OR, odds ratio; CI, confidence interval; GSTM1, glutathione S-transferase M1.
(8%), digestive (6%), and traumatologic diseases (6%). The main admission motives were related to general symptoms (7%) for the other categories. All cases and controls had to be regular smokers, defined as individuals having smoked five cigarettes or more (or cigars or pipe) per day for ≥5 years. They were recruited by seven trained interviewers who enrolled both cases and controls. Subjects completed a questionnaire during a personal interview to collect detailed information on demographic factors, medical history, lifetime tobacco and alcohol use, and occupational exposures. The daily consumption of each type of tobacco smoked was expressed in g/day (1 g for cigarette, 2 g for cigar, and 3 g for pipe; Ref. 14). The average number of grams of tobacco smoked per day was calculated by dividing the cumulative lifetime tobacco consumption by the overall duration of smoking. Lifetime smoking exposure was also expressed in pack-years of smoking (years smoked times the packs of cigarettes per day).

Of the 150 cases, 98 (65%) had squamous cell carcinoma, and 52 (35%) had small cell carcinoma. Individuals were almost all men (93% of cases and 95% of controls). The mean age was slightly higher for cases than for controls (58.4 years versus 55 years; P < 0.01). The average daily consumption of tobacco was similar in cases (26.3 g/day) and controls (25.1 g/day), but patients had smoked longer than controls (38 years versus 32.2 years; P < 0.0001), and the mean number of pack-years was higher in cases than in controls (48.3 versus 39.7; P < 0.01). Cases reported greater occupational exposure to asbestos than controls (19% versus 7%; P < 0.001). For arsenic exposure, the figures were 5% for cases and 1% for controls (P = 0.12).

Genotyping Analyses. Peripheral blood samples were collected in EDTA tubes and stored at −20°C. Total WBC DNA extraction was performed using standard techniques. Analyses were conducted blindly to case-control status. The CYP1A1 and GSTM1 genotype data have been published (Ref. 12, 13). The MPO genotype was determined essentially as described in Ref. 7. Briefly, a 350-bp PCR product was amplified using forward primer MPOF (5′-CGG TAT AGG CAC ACA ATG GTG AG-3′) and reverse primer MPOR (5′-GCA ATG GTT CAA GCG ATT CTT C′-3′). Subsequent to PCR, an aliquot was digested with AciI restriction enzyme (New England Biolabs, Beverly, MA). The presence of a 289-bp band in gel picture revealed the variant A allele, whereas in the PCR product from the wild-type G allele, this fragment was cut into 169- and 120-bp fragments. In addition to the above fragments, a 61-bp digestion fragment was seen in both cases serving as an internal control for successful enzymatic digestion.

Positive and negative controls were used within each batch of PCR amplification performed unaware of the case-control status. Two independent readers interpreted gel pictures. All samples with ambiguous results, and a random selection of 10% of all samples, were repeated to ensure laboratory quality control.

Statistical Analyses. Hardy-Weinberg equilibrium was tested by a goodness of fit χ² test to compare the observed frequencies of G/G, G/A, and A/A genotypes with the expected frequencies in controls.

ORs of lung cancer and 95% CIs in relation to MPO genotype were estimated by unconditional logistic regression models (15). All risk estimates were adjusted for age (≤50, 50–59, 60–69, and 70 years), sex, and hospital. Multivariate analyses included additional terms for the subject’s status (ex-smoker/current smokers), inhalation of tobacco smoke (never- versus pack-years was higher in cases than in controls (48.3 versus 39.7; P < 0.01). Cases reported greater occupational exposure to asbestos than controls (19% versus 7%; P < 0.001). For arsenic exposure, the figures were 5% for cases and 1% for controls (P = 0.12).

Genotyping Analyses. Peripheral blood samples were collected in EDTA tubes and stored at −20°C. Total WBC DNA extraction was performed using standard techniques. Analyses were conducted blindly to case-control status. The CYP1A1 and GSTM1 genotype data have been published (Ref. 12, 13). The MPO genotype was determined essentially as described in Ref. 7. Briefly, a 350-bp PCR product was amplified using forward primer MPOF (5′-CGG TAT AGG CAC ACA ATG GTG AG-3′) and reverse primer MPOR (5′-GCA ATG GTT CAA GCG ATT CTT C′-3′). Subsequent to PCR, an aliquot was digested with AciI restriction enzyme (New England Biolabs, Beverly, MA). The presence of a 289-bp band in gel picture revealed the variant A allele, whereas in the PCR product from the wild-type G allele, this fragment was cut into 169- and 120-bp fragments. In addition to the above fragments, a 61-bp digestion fragment was seen in both cases serving as an internal control for successful enzymatic digestion.

Positive and negative controls were used within each batch of PCR amplification performed unaware of the case-control status. Two independent readers interpreted gel pictures. All samples with ambiguous results, and a random selection of 10% of all samples, were repeated to ensure laboratory quality control.

Statistical Analyses. Hardy-Weinberg equilibrium was tested by a goodness of fit χ² test to compare the observed frequencies of G/G, G/A, and A/A genotypes with the expected frequencies in controls.

ORs of lung cancer and 95% CIs in relation to MPO genotype were estimated by unconditional logistic regression models (15). All risk estimates were adjusted for age (≤50, 50–59, 60–69, and 70 years), sex, and hospital. Multivariate analyses included additional terms for the subject’s status (ex-smoker/current smokers), inhalation of tobacco smoke (never-
Lung Cancer and MPO Genotype

Table 1 Distribution of MPO genotype among lung cancer patients and controls and ORs (95% CI) of lung cancer

<table>
<thead>
<tr>
<th>MPO genotype</th>
<th>Cases n (%)</th>
<th>Controls n (%)</th>
<th>OR a (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G/G</td>
<td>98 (65.3)</td>
<td>96 (55.8)</td>
<td>1*</td>
</tr>
<tr>
<td>G/A</td>
<td>42 (28.0)</td>
<td>63 (36.6)</td>
<td>0.50 (0.29–0.88)</td>
</tr>
<tr>
<td>A/A</td>
<td>10 (6.7)</td>
<td>13 (7.6)</td>
<td>0.84 (0.31–2.32)</td>
</tr>
<tr>
<td>G/A or A/A</td>
<td>52 (34.7)</td>
<td>76 (44.2)</td>
<td>0.55 (0.33–0.93)</td>
</tr>
</tbody>
</table>

a Adjusted for sex, age, hospital, smoking, and occupational exposures. Data on smoking are missing for four cases and three controls.

Table 2 ORs (95% CI) of lung cancer in relation to MPO genotype by pack-years of smoking, GSTM1 genotype, and CYP1A1Msp1 genotype

<table>
<thead>
<tr>
<th>MPO genotype</th>
<th>Pack-years of smoking < 35</th>
<th>OR b (95% CI)</th>
<th>Cases/controls</th>
<th>Pack-years of smoking ≥35</th>
<th>OR b (95% CI)</th>
<th>Cases/controls</th>
<th>GSTM1 null</th>
<th>OR b (95% CI)</th>
<th>Cases/controls</th>
<th>CYP1A1*1/*1</th>
<th>OR b (95% CI)</th>
<th>Cases/controls</th>
<th>CYP1A1*1/*2A or *2A/*2A</th>
<th>OR b (95% CI)</th>
<th>Cases/controls</th>
<th>CYP1A1*1/*1</th>
<th>OR b (95% CI)</th>
<th>Cases/controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>G/G</td>
<td>33/46</td>
<td>0.49 (0.22–1.07)</td>
<td>18/40</td>
<td>61/47</td>
<td>0.46 (0.21–0.99)</td>
<td>24/35</td>
<td>52/48</td>
<td>0.57 (0.28–1.16)</td>
<td>28/41</td>
<td>52/48</td>
<td>0.56 (0.31–1.00)</td>
<td>59/58</td>
<td>0.36 (0.13–4.06)</td>
<td>35/34</td>
<td>0.32 (0.10–1.11)</td>
<td>13/18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G/A</td>
<td>6/18</td>
<td>0.29 (0.11–0.73)</td>
<td>16/32</td>
<td>3/18</td>
<td>0.15 (0.04–0.60)</td>
<td>10/20</td>
<td>2/10</td>
<td>0.11 (0.01–1.27)</td>
<td>1/10</td>
<td>2/10</td>
<td>0.12 (0.02–0.76)</td>
<td>5/5</td>
<td>0.07 (0.00–2.21)</td>
<td>3/3</td>
<td>0.03 (0.00–0.61)</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/A</td>
<td>1/8</td>
<td>0.13 (0.02–0.96)</td>
<td>4/8</td>
<td>0/2</td>
<td>0.00 (0.00–1.00)</td>
<td>1/2</td>
<td>0/1</td>
<td>0.00 (0.00–1.00)</td>
<td>0/1</td>
<td>0/1</td>
<td>0.00 (0.00–1.00)</td>
<td>0/2</td>
<td>0.00 (0.00–1.00)</td>
<td>0/2</td>
<td>0.00 (0.00–1.00)</td>
<td>0/2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b Reference category.

disease groups, although the power to detect such differences is low. Moreover, the frequency of the A allele in our control population was consistent with those reported in Caucasian populations (Refs. 7–9, 11, and 16; Xu et al., this issue).

Consistent with our findings, a significant reduction in risk among carriers of the A allele (A/A and A/G genotypes) was recently demonstrated in two studies among Caucasians (8, 16). A reduced risk of lung cancer was also found among carriers of the A/A genotype among Caucasian (7, 9), African-American (7), and Japanese (9) populations. These results contrast with the two remaining studies, reporting a lack of association (Ref. 11; Xu et al., this issue).

The statistical power to detect a decreased risk of lung cancer associated with the MPO A/A genotype of the individual studies is generally limited because of its low prevalence. Therefore, we combined the data of 10 case-control studies in a meta-analysis totalling 2686 lung cancer cases and 3325 controls. Selected characteristics of the studies and individual study results of lung cancer associated with MPO 463G → A polymorphism are displayed in Table 3. The majority of subjects of the pooled data set were Caucasians (86%). More than one-third of cases and controls were included in the study by Xu et al. (this issue). Although control selection procedures differed between studies, the frequencies of the A allele among Caucasians were very comparable in studies with healthy controls (range: 0.2–0.26) or hospital controls (range: 0.21–0.26).

An OR suggesting a protective effect for A allele containing genotypes (A/A and G/A) was found in six studies, but the decrease in risk was statistically significant in only two of them (Table 3).

The summary OR of all of the 10 studies (Table 4) suggested a slight protective effect for the MPO A/A genotype (OR = 0.86, 95% CI: 0.67–1.1). However, the large study by Xu et al. (this issue) had a strong influence on the results of the meta-analysis; in this study, the OR associated with the A/A genotype was 1.34 (95% CI: 0.87–2.06). The other nine studies constituted a homogeneous set (homogeneity test, P = 0.55), which yielded a significantly reduced summary OR for the A/A genotype (OR = 0.68, 95% CI: 0.5–0.93). This pooled OR was significantly different (P = 0.007) from the OR of 1.34 observed in the study by Xu et al. (this issue).

Restriction to studies with Caucasian individuals (seven studies) did not materially alter these results (Table 4). The OR generated by all studies was 0.86 (95% CI: 0.66–1.13) for carriers of the A/A genotype, but the estimates lacked homogeneity (P = 0.08). Again, exclusion of the study by Xu et al. (this issue) provided a more homogeneous set (P = 0.46), and a protective effect of the A/A genotype on lung cancer risk was found (summary OR = 0.65, 95% CI: 0.45–0.92).

In our analyses, the Egger’s test, although not very powerful, suggests an absence of substantial publication bias.

In conclusion, the results of our study support the biolog-
Table 3: Summary of case-control studies of lung cancer and MPO genotype

<table>
<thead>
<tr>
<th>Study</th>
<th>Source</th>
<th>Total</th>
<th>% of G/A</th>
<th>% of A/A</th>
<th>Cases</th>
<th>Controls</th>
<th>Crude OR* (95% CI)</th>
<th>For G/A genotype</th>
<th>For A/A genotype</th>
<th>For (G/A + A/A) genotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>London et al. b (7)</td>
<td>USA</td>
<td>182</td>
<td>32.4</td>
<td>2.2</td>
<td>Healthy</td>
<td>459</td>
<td>31.2</td>
<td>7.8</td>
<td>0.97 (0.67–1.41)</td>
<td>0.26 (0.09–0.75)</td>
</tr>
<tr>
<td>London et al. c (7)</td>
<td>USA</td>
<td>175</td>
<td>34.9</td>
<td>7.6</td>
<td>Healthy</td>
<td>244</td>
<td>41.0</td>
<td>9.4</td>
<td>1.26 (0.83–1.92)</td>
<td>0.89 (0.42–1.90)</td>
</tr>
<tr>
<td>Casco et al. d (8)</td>
<td>Germany</td>
<td>196</td>
<td>25.0</td>
<td>3.1</td>
<td>Hospital</td>
<td>196</td>
<td>38.3</td>
<td>2.0</td>
<td>0.54 (0.35–0.84)</td>
<td>1.25 (0.34–4.52)</td>
</tr>
<tr>
<td>Le Marchand et al. e (9)</td>
<td>USA</td>
<td>135</td>
<td>28.2</td>
<td>5.2</td>
<td>Healthy</td>
<td>171</td>
<td>33.9</td>
<td>8.8</td>
<td>0.71 (0.43–1.17)</td>
<td>0.51 (0.20–1.30)</td>
</tr>
<tr>
<td>Le Marchand et al. f (9)</td>
<td>USA</td>
<td>108</td>
<td>21.3</td>
<td>0.9</td>
<td>Healthy</td>
<td>163</td>
<td>25.1</td>
<td>4.3</td>
<td>0.77 (0.43–1.38)</td>
<td>0.20 (0.02–1.62)</td>
</tr>
<tr>
<td>Le Marchand et al. g (9)</td>
<td>USA</td>
<td>80</td>
<td>20.0</td>
<td>5.0</td>
<td>Healthy</td>
<td>103</td>
<td>16.5</td>
<td>4.8</td>
<td>1.27 (0.59–2.72)</td>
<td>1.08 (0.28–4.19)</td>
</tr>
<tr>
<td>Misra et al. h (11)</td>
<td>Finland</td>
<td>315</td>
<td>34.3</td>
<td>5.1</td>
<td>Healthy</td>
<td>311</td>
<td>39.8</td>
<td>6.8</td>
<td>1.39 (0.98–1.96)</td>
<td>0.82 (0.42–1.62)</td>
</tr>
<tr>
<td>Schahath et al. i (16)</td>
<td>USA</td>
<td>375</td>
<td>33.6</td>
<td>3.7</td>
<td>Healthy</td>
<td>378</td>
<td>41.5</td>
<td>5.1</td>
<td>0.69 (0.51–0.93)</td>
<td>0.63 (0.31–1.29)</td>
</tr>
<tr>
<td>Xu et al. j (this issue)</td>
<td>USA</td>
<td>984</td>
<td>34.7</td>
<td>4.8</td>
<td>Healthy</td>
<td>1128</td>
<td>34.6</td>
<td>3.6</td>
<td>1.03 (0.85–1.23)</td>
<td>1.34 (0.87–2.06)</td>
</tr>
<tr>
<td>Present study b</td>
<td>France</td>
<td>150</td>
<td>28.0</td>
<td>6.7</td>
<td>Healthy</td>
<td>172</td>
<td>36.6</td>
<td>7.6</td>
<td>0.65 (0.40–1.06)</td>
<td>0.75 (0.32–1.80)</td>
</tr>
</tbody>
</table>

*G/A genotype as reference category, 95% CI of ORs computed by Woolf’s method.

References:
Cancer Epidemiology, Biomarkers & Prevention

Point: Myeloperoxidase –463G → A Polymorphism and Lung Cancer Risk

Anne Feyler, Anu Voho, Christine Bouchardy, et al.

Updated version Access the most recent version of this article at:
http://cebp.aacrjournals.org/content/11/12/1550

Cited articles This article cites 16 articles, 5 of which you can access for free at:
http://cebp.aacrjournals.org/content/11/12/1550.full#ref-list-1

Citing articles This article has been cited by 12 HighWire-hosted articles. Access the articles at:
http://cebp.aacrjournals.org/content/11/12/1550.full#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.