Validity of Free Testosterone and Free Estradiol Determinations in Serum Samples from Postmenopausal Women by Theoretical Calculations

Sabina Rinaldi, Annabelle Geay, Henri Déchaud, Carine Biessy, Anne Zeleniuch-Jacquotte, Arslan Akhmedkhanov, Roy E. Shore, Elio Riboli, Paolo Toniolo, and Rudolf Kaaks

Abstract

In this study, we validated measurements of free testosterone (fT) and free estradiol (fE2) concentrations calculated from total serum concentrations of testosterone (T), estradiol (E2), and sex hormone-binding globulin (SHBG), measured by direct, commercial radioimmunoassays, by comparison with reference measurements obtained by dialysis plus an in-house radioimmunoassay after extraction and chromatographic purification. The study was conducted in serum samples from 19 postmenopausal women who were part of an ongoing prospective cohort study. We also performed sensitivity analyses to examine the robustness of the theoretical calculations. Sensitivity analyses showed that in this population, competitive binding of dihydrotestosterone and total T could be ignored in the calculation of fE2, and competitive binding by dihydrotestosterone does not need to be taken into account for calculation of fT. Furthermore, variations in albumin and SHBG concentrations had negligible effects on fT and fE2 calculations. Values of fT and fE2 calculated from total T and E2 concentrations obtained by the same in-house radioimmunoassay used for the dialysis method, correlated highly with the measurements by dialysis (Pearson’s coefficients of correlation above 0.97). When calculating fT and fE2 using total T and total E2 concentrations obtained by direct radioimmunoassays, almost all kits gave good correlations with the reference method for fT (Pearson’s r > 0.83), but only a few gave good correlations for fE2 (Diagnostic System Laboratories and DiaSorin; r > 0.80). The direct radioimmunoassays giving the best correlation for fT and fE2 with the dialysis method were those that best measured total concentrations of T and E2. Furthermore, mean values of fT and fE2 corresponded well to mean values by the reference method if SHBG measurements were also well calibrated. We conclude that in postmenopausal women, theoretical calculations are valid for the determination of fT and fE2 concentrations and can give reliable estimation of cancer risk in epidemiological studies when the total concentrations of T, E2, and SHBG are measured accurately.

Introduction

Epidemiological studies have shown relationships of breast and endometrial cancers with concentrations of T2 and E2 in blood among postmenopausal women (1–3). Both T and E2 are transported in blood bound to proteins (4, 5), of which the most important are albumin and SHBG. Together, these proteins bind >97% of T and E2 circulating in blood (6). The percentage of T and E2 that circulates either free (i.e., unbound to any protein) or bound to albumin is defined as the “bioavailable fraction” because only this fraction can potentially cross cellular membranes and bind to the nuclear steroid receptors (7). The bioavailable fraction is virtually equal to the fraction not linked to SHBG (8) and represents >50% of total E2 and >30% of total T in normal women and men (9). fT and fE2 are most directly available to tissues under physiological conditions and generally correlate strongly with concentrations of T and E2 unbound to SHBG (8).

To clarify the roles of fT and fE2 (and therefore of their bioavailable fractions) in the development of cancer in postmenopausal women, it is important to have precise and inexpensive methods for their measurement that can be easily applied to large-scale epidemiological studies. Several methods have been set up for the measurement of fT and fE2 rather than for the measurement of the bioavailable fractions because in normal subjects, the free and bioavailable fractions are very highly correlated (8), and the methods for the measurement of the T and E2 bioavailable fractions require a large amount of biological sample (10–12). The most common methods for measurement of fT and fE2 are based on dialysis (13, 14), ultrafiltration (15–18), and gel filtration (19, 20). These methods do not measure the absolute concentrations of fT and fE2 directly but measure fT and fE2 as percentages of the total circulating T and E2 concentrations. Absolute levels of fT and fE2 are then determined by multiplying the percentage of fT or fE2 with measurements of total T and E2, respectively (13). Gel
filtration has been largely abandoned nowadays because it may change thermodynamic equilibrium conditions during the assay, and because it may strip hormones from binding proteins (21). Dialysis is considered as the reference method for the measurement of fT and fE2, but it is slow to perform, technically demanding, laborious and expensive, and requires a relatively large sample volume. Ultrafiltration assays are faster, but they remain technically demanding and cumbersome.

An alternative and simple method is to use theoretical calculations of fT and fE2 from total plasma concentrations of T, E2, and SHBG. The free androgen index, calculated as the quotient $100 \times \frac{T}{\text{SHBG}}$ (where T = total molar concentration of T, and SHBG = total molar concentration of SHBG in plasma), has been found to be inaccurate as an index of calculation of fT concentration in men, postmenopausal women, and hyperthyroid subjects (22). However, the validity of more complex theoretical calculations, using mass action models based on concentrations of total hormones in blood and their affinity constants for albumin and SHBG (6, 9, 23, 24), has not been extensively examined.

In this paper, we present the results of a study in which we tested the validity of different theoretical calculations for fT and fE2 in postmenopausal women by comparison with reference values obtained by equilibrium dialysis plus an in-house radioimmunoassay after chromatographic purification. Values of total T and E2 for fT and fE2 calculations were obtained by direct, commercially available radioimmunoassays and by an in-house indirect radioimmunoassay. Furthermore, to test the robustness of the theoretical calculations, we simulated the effects on calculated values of fT and fE2, that may be induced by changes in steroid hormone concentrations and levels of SHBG and albumin (sensitivity analyses).

Materials and Methods

Subjects and Blood Collection. Serum samples were taken from 20 postmenopausal women who participated in the New York University Women’s Health Study, an ongoing prospective cohort study in New York. The 20 study subjects were selected at random from a subset of about 2000 women who had donated blood at least four times during the course of the study. For these women, a pooled serum sample of about 24 ml was made from serum samples obtained on two different occasions, which was then re-aliquoted into 1-ml vials and frozen until the measurement of hormones by radioimmunoassays and dialysis.

For one subject, SHBG concentration was very high [213 nmol/liter, a concentration well above the maximum physiological value considered normal in women (between 17 and 87 nmol/liter), a range established on SHBG measurements by the same radioimmunoassay used in this study on more than 1500 postmenopausal women at the Laboratory for Hormone Assays, Unit of Nutrition and Cancer, IARC, Lyon, France)]. This subject was therefore excluded from the study, following the principle that this type of subject would also have been excluded from an epidemiological study, and 19 subjects thus remained for our final analyses.

Measurements of Total T, Total E2, and SHBG Concentrations. Concentrations of total T and total E2 were measured as described in detail previously (25). In brief, total T and total E2 were measured by an in-house radioimmunoassay after extraction by diethyl ether and chromatographic purification on celite columns (celite method), as well as by commercially available direct radioimmunoassays. For total T, direct radioimmunoassays were obtained from Immunotech (Marseille, France), Orion (Orion Diagnostica, Espoo, Finland), Cis-Bio International (Gif-sur-Yvette, France), Diagnostic System Laboratories (Webster, TX), DiaSorin (Saluggia, Italy), and Byk-Sangtec Diagnostica (Dietzenbach, Germany); for total E2, direct radioimmunoassays were obtained from Immunotech, Cis-Bio International, DSL, DiaSorin, and Bio Source Europe (Nivelles, Belgium).

For SHBG, concentrations were measured by two solid-phase sandwich immunoradiometric assays (Cis-Bio International and DSL). The immunoradiometric assay by Cis-Bio International had been validated previously in our laboratories against a reference method based on total T binding capacity (9, 26). The values of SHBG used for the theoretical calculations and for the sensitivity analyses were those obtained by the Cis-Bio International immunoradiometric assay.

Measurements by the celite method were done at the Central Laboratory for Biochemistry, Hôpital Neuro-cardiologique (Lyon, France), whereas the direct assays were all performed at the Laboratory for Hormone Assays, Unit of Nutrition and Cancer (IARC).

Measurements of fT and fE2 by Equilibrium Dialysis. Measurements of fT and fE2 by equilibrium dialysis were done as described in detail previously (13). In brief, dialysis was performed at 37°C using dialysis membranes (Union Carbide, Chicago, IL) for the separation of free and bound fractions of hormones. For each subject, 1 ml of 1:5-diluted serum sample put was into the dialysis membrane, and a known amount of tritiated T or E2 ([3H]T or [3H]E2, about 10,000 cpm in 3 ml of phosphate buffer) was added. After dialysis, 650 μl of the solution inside the dialysis casing and 1 ml of the saline outside the casing were extracted with ethyl ether, and the organic fraction was dried under a gentle stream of nitrogen. The dried extracts were redissolved in 750 μl of saline. Five hundred μl of the solution were then added to 3 ml of scintillation liquid, and [3H]T or [3H]E2 activities were counted in a liquid scintillation counter with automatic quench correction. The percentage of the free fraction was then calculated as follows:

$$\% \text{ free} = \frac{D}{R} \times \frac{V_f}{V_d} \times 100$$

where D is the total concentration of free steroid in volume Vd outside the casing, and R is the total concentration of steroid in volume Vf inside the casing (13).

To calculate the absolute concentrations of fT or fE2, the percentage free obtained by dialysis was multiplied by the total concentration of T or E2, respectively. Total T and total E2 were measured by radioimmunoassay after organic extraction and chromatographic prepurification on celite columns (celite method), as described in detail previously (25).

All of the measurements by dialysis plus the celite method were performed at the Central Laboratory for Biochemistry, Service de Radio analyse et Radiopharmacie, Hôpital Neuro-cardiologique.

Calculations of fT and fE2 Using Mass Action Equations. Two different sets of equations based on the mass action law were used for the calculation of fT and fE2.

The first set, previously discussed by Vermeulen et al. (23) for fT, relies on the assumption that the concentration of fT (or fE2) in blood is determined mainly by the interaction between SHBG and albumin, and total T (or total E2) through the different affinity constants of the peptides for these steroid hormones, and that other hormones present in blood do not influence this equilibrium much; that is:
\[
\frac{[\text{T}]}{([\text{T}] - (N \times [\text{T}]))) = \left(\frac{\text{K}_a[\text{SHBG}][\text{T}]}{[\text{T}] + \text{N}_1} \right)
\]

\[
\frac{[\text{E}_2]}{([\text{E}_2] - (N \times [\text{E}_2]))) = \left(\frac{\text{K}_a[\text{E}_2][\text{SHBG}]}{[\text{E}_2] + \text{N}_2} \right)
\]

where \([\text{T}]\) and \([\text{E}_2]\) are total \(\text{T}\) and total \(\text{E}_2\) concentrations, respectively; \([\text{T}]/([\text{T}])\) and \([\text{E}_2]/([\text{E}_2])\) are \(\text{T}\) and \(\text{E}_2\) concentrations; \(\text{K}_a\) and \(\text{K}_s\) are the affinity constants of SHBG for \(\text{T}\) and \(\text{E}_2\); \(\text{N}_1\) and \(\text{N}_2\) are the albumin concentration (considered as equal to 43 g/liter \(-6.5 \times 10^{-4}\) mol/liter), and \(\text{K}_a\) and \(\text{K}_s\) are the affinity constants of albumin for \(\text{T}\) and \(\text{E}_2\).

The second set of equations, discussed by Södergard et al. (6), is based on the assumption that different hormones present in blood compete for the same protein binding sites, which may have different affinity constants for each of these hormones, and that all of the binding sites of each protein are equivalent and independent.

In our study, we considered only the interactions among \(\text{T}\), \(\text{E}_2\), and \(\text{DHT}\), because in postmenopausal women, these are the most important steroids by their relative concentrations and affinity for the binding proteins. It has been demonstrated earlier that other metabolites (e.g., 5-androstene-3\(\beta\)-17\(\beta\)-dil and androstane-3\(\alpha\),17\(\beta\)-dil) influence \(\text{T}\) and \(\text{E}_2\) concentrations only very slightly (23). Therefore, the system of equations that we considered for the calculations of \(\text{T}\), \(\text{E}_2\), and \(\text{DHT}\), and \(\text{fT}\), \(\text{fE}_2\), was the following:

\[
[\text{E}_2] = \left[\text{E}_2\right] \left(1 + \frac{\text{K}_s[\text{E}_2][\text{SHBG}]}{1 + \text{K}_s[\text{E}_2][\text{SHBG}][\text{T}] + \text{K}_s[\text{DHT}][\text{DHT}]}
ight)
\]

\[
\frac{\text{K}_s[\text{E}_2][\text{SHBG}]}{1 + \text{K}_s[\text{E}_2][\text{SHBG}][\text{T}] + \text{K}_s[\text{DHT}][\text{DHT}]}
\]

\[
\frac{\text{K}_a[\text{T}][\text{SHBG}]}{[\text{T}] + \text{N}_1}
\]

\[
\frac{\text{K}_a[\text{E}_2][\text{SHBG}]}{[\text{E}_2] + \text{N}_2}
\]

Sensitivity Analyses of Mass Action Equations. Sensitivity analyses on the theoretical calculations consisted of simulating the effects of changes in the total concentrations of \(\text{E}_2\), \(\text{T}\), \(\text{DHT}\), albumin, and SHBG on (calculated) concentrations of \(\text{T}\) and \(\text{E}_2\). Effects were evaluated mainly by comparison of mean measurement values and by the calculation of Pearson’s coefficients of correlation between calculated values before and after changes in total hormone values.

Comparison of Theoretical Calculations with Equilibrium Dialysis Method. To validate Eq. A and Eq. B for the calculations of \(\text{T}\) and \(\text{E}_2\), the values of \(\text{T}\) and \(\text{E}_2\) obtained by these equations for the 19 study subjects were compared with the values obtained by equilibrium dialysis. All analyses were performed on log_{10}-transformed variables to approximately normalize their frequency distributions. Statistical analyses included the calculation of geometric means and CIs and Pearson’s correlation coefficients.

Results

Sensitivity Analyses

Influence of Competing Steroids and Albumin Levels on Calculated \(\text{T}\) and \(\text{E}_2\) Concentrations. Variations (in the postmenopausal range) of the concentrations of \(\text{DHT}\) and \(\text{E}_2\) had negligible effects on the measurements of \(\text{T}\) by Eq. B, leading to a maximum change in mean \(\text{T}\) concentrations of only 0.68% compared with the values obtained when using total \(\text{T}\) concentrations by the celite method. The same effect was observed on calculated \(\text{E}_2\) when varying \(\text{DHT}\) and \(\text{T}\) concentrations in the postmenopausal range (maximum change of 0.45%). Furthermore, the relative ranking of the 19 subjects by calculated values of \(\text{T}\) and \(\text{E}_2\) also remained virtually unaffected by these variations in total hormone concentrations (Pearson’s correlations > 0.996). \(\text{T}\) and \(\text{E}_2\) could therefore be calculated by the simpler Eq. A with virtually identical results.

The variation in the absolute levels of albumin between 30 and 60 mg/ml for all of the subjects led to a maximum change of 12% in mean \(\text{T}\) concentrations and a 22% variation in mean \(\text{E}_2\) levels. Pearson’s coefficients of correlation with the reference values obtained by dialysis plus celite method were always >0.97. In addition, the attribution of random albumin values between 40 and 50 g/liter to the 19 subjects had very little effect on the relative classification of these women by relative calculated \(\text{T}\) and \(\text{E}_2\) values (Pearson’s correlations of 0.97 and higher between \(\text{T}\) and \(\text{E}_2\) values obtained Eq. A and reference values obtained by dialysis plus celite method). Thus, changes in absolute levels of albumin concentration affected absolute levels of calculated \(\text{T}\) and \(\text{E}_2\) but appeared to have very little effect on the relative classification of subjects from low to high values.

Influence of Different SHBG Measurements on Calculated \(\text{T}\) and \(\text{E}_2\) Concentrations. Mean SHBG values were 52.68 and 134.58 nmol/liter for the Cis-Bio International and DSL assays, respectively, and Pearson’s coefficient of correlation between the two SHBG assays was 0.96. Using total \(\text{T}\) and total \(\text{E}_2\) concentrations from the celite method, the mean values of \(\text{T}\) and \(\text{E}_2\) calculated by Eq. A were 2.91 and 0.12 pmol/liter, respectively, when SHBG was measured by the DSL assay, instead of 4.70 and 0.16 when the SHBG assay of Cis-Bio International was used. However, correlations were above 0.995 for \(\text{T}\) and \(\text{E}_2\) calculated from the two series of SHBG values.

To simulate the effects on \(\text{T}\) and \(\text{E}_2\) concentrations when SHBG values do not correlate with the individual’s true levels, concentrations obtained by the Cis-Bio International assay were
randomized among the 19 subjects of the study (randomizations and calculations were repeated 100 times). On average, randomized concentrations of SHBG had close-to-zero Pearson’s coefficients of correlation with the individual’s original ("true") SHBG values (mean \(r = -0.06 \)). Nevertheless, calculated values of fE_2 remained highly correlated with those calculated with the correct SHBG values (mean value of 0.94), as well as with fE_2 values from the dialysis method (mean value of 0.96). However, the correlations for calculated values of fT dropped with respect to those where correct SHBG values were used (mean \(r = 0.78 \)) or with respect to the values by dialysis plus celite method (\(r = 0.75 \)).

Comparison between Calculated Values for fT and fE_2 and Reference Values by Dialysis. Geometric means and 95% CIs for fT and fE_2 obtained by the different methods are shown in Table 1. The SHBG values used in the calculations were those obtained by the Cis-Bio International assay (the Cis-Bio International assay was found to have mean values closest to a reference assay based on steroid-binding capacity\(^3\)). Concentrations of fT and fE_2 calculated by Eq. A were only slightly higher than those obtained by dialysis plus celite method (10% for fT and 19% for fE_2), when also total T and total E_2 concentrations were measured by the celite method, and when SHBG was measured by the Cis-Bio International kit. However, values of fT and fE_2 calculated from T and E_2 concentrations by different direct radioimmunoassays were systematically higher than the reference measurements by the dialysis plus celite method. These large variations in mean fT and fE_2 values paralleled equally large variations in mean levels of the absolute concentrations of T and E_2 by the different immunoassay kits [see detailed results in our previous report (25)].

Pearson’s coefficients of correlation between the different methods for measurement or calculation of fT and fE_2 are in Table 2. For both fT and fE_2, the highest correlations (\(r > 0.97 \)) between values calculated by Eq. B and dialysis were found when fT and fE_2 were calculated from total T and E_2 measured by the celite method using the SHBG kit by Cis-Bio International (Fig. 1, a and b, respectively). However, good correlations with the reference method (\(r > 0.85 \)) were also found when fT was calculated from total T concentrations by the direct assay (Immunotech) that gave the highest correlation with total T measured by celite method [\(r = 0.86 \); see our previous report (25)]. A very similar observation was made for fE_2 (Table 2). Assays that correlated best for total E_2 measurements with the celite method (DiaSorin and DSL, \(r > 0.84 \)) gave good correlations for fE_2 compared with the dialysis plus celite method (\(r > 0.80 \)). Conversely, direct assays of total E_2 that correlated poorly with measurements by the celite method (Immunotech; \(r = 0.29 \)) also resulted in poor correlation (\(r = 0.39 \)) for calculated fE_2 with fE_2 measured by the dialysis plus celite method.

Discussion

We examined the validity of calculated concentrations of fT and fE_2 in serum samples from postmenopausal women by sensitivity analyses (theoretical simulations) as well as by comparison with measurements obtained by the equilibrium dialysis and celite method.

Our simulations with Eq. B showed that influences (due to competitive binding) of T and DHT on the calculation of fE_2 and influences of DHT and E_2 on the calculation of fT could be

\(^3\) H. Déchaud, unpublished results.
The calculation of fT levels for these population groups. A much
menopausal women), and also proposed the reduced Eq. A for
the values of the celite method. Furthermore, in situations
for validation of direct assays of total T and E2 by commercially
on celite columns. The use of the celite method as a reference
indirect immunoassay after organic extraction and purification
oretical calculations from different measurements of total T, E2,
higher concentrations of T and E2, respectively, than post-
servations, even for men and premenopausal women (who have
sites on this protein. Vermeulen et al.
and E2. Thus, there is only limited competition for the binding
places in epidemiological studies (SAS; SAS In-
the major determinant of fT or fE2 levels measured as a per-
mean levels of direct assays of total T or E2 were
substantially higher than mean celite values, but where those
assays correlated strongly with values from the celite method,
calculated fT and fE2 values also remained highly correlated
with the reference values based on equilibrium dialysis plus
celite method but then had higher mean concentrations of fT or
fE2 as well.

Additional analyses showed that whereas SHBG levels are
the major determinant of fT or fE2 levels measured as a per-
centage of total T and E2, absolute concentrations of fT and fE2
derived more predominantly on concentrations of total T and
E2. Measurements of total T, obtained by the celite method or
by the different direct radioimmunoassays, showed relatively
strong correlations with fT values that were calculated or meas-
urried by dialysis (Pearson’s correlations between 0.88 and 0.97).
By contrast, the percentage of fT did not show any clear
correlation with levels of total T (Pearson’s correlations varied
between ~0.23 and 0.39, depending on the combination of
assays for T and SHBG from which fT was calculated) but
correlated strongly and inversely with SHBG measurements
(r = ~0.94 for SHBG by Cis-Bio International assay). Similar
results were obtained for fE2, which correlated directly with
total E2 concentrations measured by the celite method or by the
different direct immunoassays (Pearson’s correlations between
0.86 and 0.996), whereas fE2 as a percentage of total E2
correlated strongly and inversely with SHBG values (r =
~0.95 for SHBG by Cis-Bio International assay) but very
poorly with total E2 (correlations between 0.11 and 0.36).

Globally, these results indicate that, at least within a ran-
dom sample of postmenopausal women with SHBG levels
within the normal physiological range, variations in levels of
albumin and SHBG did not have much influence on the relative
ranking of subjects. This limited influence of SHBG and albu-
min levels was confirmed by our theoretical simulations, which

Table 2	Pearson’s coefficients of correlation and CIs between fT and fE2 measurements by dialysis plus the celite method and by theoretical calculations (by Eq. A)*						
	Celite	Immunotech	DiaSorin	DSL	Orion	Byk	Cis-Bio
A. Total T (CI)							
Celite	1.00	0.93	0.76	0.79	0.78	0.70	
	(0.74-0.92)	(0.74-0.96)	(0.58-0.87)	(0.63-0.88)	(0.62-0.88)	(0.50-0.83)	
B. fT calculated from total T obtained by							
Dialysis + celite	0.97	0.89	0.80	0.76	0.89	0.75	0.85
	(0.92-0.99)	(0.74-0.96)	(0.54-0.92)	(0.46-0.90)	(0.73-0.96)	(0.45-0.90)	(0.65-0.94)
C. Total E2 (CI)							
Celite	1.00	0.29	0.86	0.84			
		(−0.03–0.55)	(0.75–0.93)	(0.72–0.92)			
D. fE2 calculated from total E2 obtained by							
Dialysis + celite	0.996	0.39	0.89	0.80			
	(0.99–1.00)	(−0.05–0.73)	(0.73–0.96)	(0.54–0.92)			

*SHBG concentrations were measured by the Cis-Bio International assay.

a Byk, Byk-Sangtec Diagnostica; Cis-Bio, Cis-Bio International.
showed that between-subject variations in albumin level, within the normal range of about 40–50 g/liter, had very little influence on the relative classification of subjects by calculated levels of fT and fE₂ and that even changes in albumin concentrations over a broader range (30–60 g/liter) had only modest effects on calculated concentrations of fT and fE₂. Likewise, between-subject variation in SHBG levels (e.g., randomization of SHBG values of the 19 subjects retained for this study) had only moderate effects on the subjects’ classification by relative fT and fE₂ levels. However, our data also showed that correct calibration of the scale of SHBG measurements remains a requirement, if the objective is to obtain accurate mean calculated values of fT and fE₂ (this was illustrated by the difference in mean values for fT and fE₂ calculated from SHBG measurements from the Cis-Bio International or DSL kits).

Although variations in SHBG level had only a modest impact on calculated values of fT and fE₂ in our population sample of normal postmenopausal women, this may not be true for other populations that include subjects with extreme values of SHBG (as in many clinical situations). Indeed, when we considered a population of 90 premenopausal women including cases with both pathologically low and high levels of SHBG (from 5 to 272 nmol/liter) and T (from 5.1 to 104 ng/100 ml), randomization of SHBG levels among the subjects strongly affected the relative ranking of subjects by calculated concentrations of fT (average Pearson’s coefficient of correlation of 0.30 with fT values calculated from the correct SHBG concentrations).

In conclusion, theoretical calculations can provide an accurate method for the determination of fE₂ and fT in serum samples from postmenopausal women, provided that the concentrations of total T, total E₂, and SHBG are measured accurately. Direct radioimmunoassays are methods that best meet the needs of epidemiological studies in terms of speed, cost, and sample volume required. Our study shows that direct assay kits for the measurement of total T and E₂ can be found that allow at least an accurate classification of postmenopausal women by their relative levels of fT and fE₂, although the exact scaling of measurements, especially for fE₂, may remain problematic.

Acknowledgments
We thank Francine Claustrat and Veronique Morin-Raverot for assistance with dialysis and celite method measurements, David Achaintre and Béatrice Vozar for technical support with the direct radioimmunoassays, and Jennie Dehedin and Odile Drute for secretarial help.

References
Validity of Free Testosterone and Free Estradiol Determinations in Serum Samples from Postmenopausal Women by Theoretical Calculations

Sabina Rinaldi, Annabelle Geay, Henri Déchaud, et al.

Updated version Access the most recent version of this article at: http://cebp.aacrjournals.org/content/11/10/1065

Cited articles This article cites 27 articles, 12 of which you can access for free at: http://cebp.aacrjournals.org/content/11/10/1065.full.html#ref-list-1

Citing articles This article has been cited by 51 HighWire-hosted articles. Access the articles at: /content/11/10/1065.full.html#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.