Soyfood Intake during Adolescence and Subsequent Risk of Breast Cancer among Chinese Women

Vanderbilt University School of Medicine, Center for Health Service Research, Nashville, Tennessee 37232; X. O. S., Q. D., W. W., W. Z.; Shanghai Cancer Institute, Shanghai 200032, People’s Republic of China [F. J., Z. R., Y.-F. G.]; Fred Hutchinson Cancer Research Center, Seattle, Washington 98109 [J. D. P.]; and Teachers College, Columbia University, New York, New York 10027 [L. H. K.]

Abstract

Many experimental but few epidemiological studies have suggested that soyfoods and their constituents have cancer-inhibitory effects on breast cancer. No epidemiological study has evaluated the association of adolescent soyfood intake with the risk of breast cancer. To evaluate the effect of soyfood intake during adolescence, one of the periods that breast tissue is most sensitive to environmental stimuli, on subsequent risk of breast cancer, we analyzed data from a population-based case-control of 1459 breast cancer cases and 1556 age-matched controls (response rate 91.1% and 90.3%). Information on dietary intake from ages 13–15 years was obtained by interview from all study participants and, in addition, from mothers of subjects less than 45 years of age (296 cases and 359 controls). Odds ratios (ORs) and 95% confidence intervals (CIs) derived from unconditional logistic models were used to measure soyfood intake and breast cancer risk. After adjustment for a variety of other risk factors, adolescent soyfood intake was inversely associated with risk, with ORs of 1.0 (reference), 0.75 (95% CI, 0.60–0.93), 0.69 (95% CI, 0.55–0.87), 0.69 (95% CI, 0.55–0.86), and 0.51 (95% CI, 0.40–0.65), respectively, for the lowest to highest quintiles of total soyfood intake (trend test, \(P < 0.001 \)). The inverse association was observed for each of the soyfoods examined and existed for both pre- and postmenopausal women. Adolescent soyfood intakes reported by participants’ mothers were also inversely associated with breast cancer risk (\(P \) for trend < 0.001), with an OR of 0.35 (95% CI, 0.21–0.60) for women in the highest soyfood intake group. Adjustment for rice and wheat products, the major energy source in the study population, and usual adult soyfood intake did not change the soyfood associations. Our study suggests that high soy intake during adolescence may reduce the risk of breast cancer in later life.

Introduction

The incidence rate of breast cancer varies worldwide, with the rate of Chinese and other Asian women only being one-third to one-half of that for Caucasian women (1). Migration and ecological studies have suggested that this variation is largely the result of environmental rather than genetic differences, and dietary variability has been implicated (2). Numerous epidemiological studies focusing on dietary fat and breast cancer association have found no or weak association between dietary fat intake and breast cancer risk (2). Evidence from animal, in vitro, and a few epidemiological studies, on the other hand, has been accumulating to suggest that soyfoods, which are consumed in significantly high quantities by Asian women, may contribute to the international variation of breast cancer risk (3–9).

Mammary glands develop primarily during the adolescent growth spurt (10). Adolescent mammary tissue is therefore probably more sensitive to carcinogenic insult than adult mammary tissue (11). Rats on soy-based diets during the prepubertal period or from puberty onward developed fewer chemically induced mammary tumors (4, 12). To our knowledge, no epidemiological study has been conducted to evaluate the association of soyfood intake during adolescence with the risk of breast cancer later in life. We report here results from the Shanghai Breast Cancer Study on the association between soyfood and other dietary intakes during adolescence and subsequent risk of breast cancer in adulthood.

Materials and Methods

The Shanghai Breast Cancer Study, a population-based case-control study, was designed to recruit all women newly diagnosed with breast cancer between the ages of 25 and 64 years during the period from August 1996 to March 1998. All study subjects were permanent residents of urban Shanghai with no prior history of cancer and were alive at the time of interview. The human investigations were performed after approval by a local institutional review board and in accord with an assurance filed with and approved by the United States Department of Health and Human Services. Written informed consent was obtained from each study participant. Through a rapid case ascertainment system, supplemented by the population-based Shanghai Cancer Registry, 1602 eligible breast cancer cases were identified during the study period, and in-person interviews were completed for 1459 cases (91.1%). The major reasons for nonparticipation were refusal (109 cases, 6.8%), death before interview (17 cases, 1.1%), and inability to locate the subject (17 cases, 1.1%). All diagnoses were confirmed by two senior pathologists through the review of slides.
The Shanghai Resident Registry, which registers all permanent residents in urban Shanghai, was used to randomly select controls from female residents who were frequency-matched to cases by age (5-year interval). The number of controls in each age-specific stratum was determined in advance according to the age distribution of the incident breast cancer cases reported to the Shanghai Cancer Registry from 1990–1993. Only women who lived at the registered address during the study period were considered to be eligible for the study. In-person interviews were completed for 1556 (90.3%) of the 1724 eligible controls identified. Reasons for nonparticipation included refusal (166 controls, 9.6%) and death or a prior cancer diagnosis (2 controls, 0.1%).

In addition to measurement of current weight, circumferences of the waist and hips, and sitting and standing heights, all study participants were interviewed face to face by trained interviewers. A structured questionnaire was used for all subjects combined and separately for premenopausal women and postmenopausal women. Menopause was defined as cessation of menstrual period (excluding that caused by pregnancy and nursing) for at least 12 months before the interview date. Total soyfood consumption was measured by adding the soy protein of each specific soyfood. Quintile distributions among controls were used to categorize the dietary intake variables (soy protein contents and cut points are provided in the footnotes of Table 2). Adolescent intake of fresh and dried legumes was not included in the total soyfood intake because it was mixed with soy beans and other legumes. ORs were used to measure the association of breast cancer risk with adolescent dietary intake. Unconditional logistic regression models were used to obtain maximum likelihood estimates of the ORs and their 95% CIs after adjusting for potential confounding variables (13). Age was included as a continuous variable throughout, and categorical variables were treated as dummy variables in the model. Tests for linear trends were performed by entering the categorical variables as continuous parameters in the models. All statistical tests were based on two-sided probability using SAS 8.01.

Results
Comparisons of cases and controls on demographic factors and traditional breast cancer risk factors, as well as usual adult energy and total fat intake, are presented in Table 1. Compared with controls, cases were slightly older (mean ages, 47.9 and 47.3 years for cases and controls, respectively; $P < 0.05$) and had an earlier age at menarche, a later age at menopause, and a later age at first live birth. Cases were more likely to have a higher education, a family history of breast cancer among first-degree relatives, a history of breast fibroadenoma, a higher body mass index, and a higher WHR and were less likely to exercise regularly than controls. All subsequent analyses included all these variables and ages in the logistic models to control for their potential confounding effects. There were no significant differences between cases and controls in parity, months of breastfeeding, family income (after adjusted for education), alcohol consumption, use of oral contraceptives, hormone replacement therapy, adult height, or usual intake of energy and fat during adulthood.

Breast cancer cases reported a lower soyfood intake than controls during adolescence (ages 13–15 years). The mean soy protein intake per day was 6.45 and 7.23 grams (median, 4.8 and 5.4 grams), respectively, for cases and controls ($P = 0.002$). After adjusting for rice and wheat product intake (the major sources of energy intake in the study population) and other factors noted above, the ORs associated with soyfood
intake during adolescence were 0.75 (95% CI, 0.57–0.93), 0.69 (95% CI, 0.55–0.87), 0.69 (95% CI, 0.55–0.86), and 0.51 (95% CI, 0.40–0.65) for the second quintile to the highest quintile of soyfood intake compared with the lowest quintile of intake ($P = 0.03$ and 0.07 for pre- and postmenopausal women, respectively; Table 3)

Among a subgroup of young women (age < 45 years) for whom maternally reported data on adolescent diet were available, the two reports of soyfood intake produced correlation coefficients of 0.29 ($P = 0.01$) and 0.30 ($P < 0.01$), respectively, for the case and control groups. For the maternal data, ORs were 0.70 (95% CI, 0.45–1.09), 0.59 (95% CI, 0.32–1.07), 0.60 (95% CI, 0.37–0.99), and 0.35 (95% CI, 0.21–0.60) for the second quintile to the highest quintile of soyfood intake compared with the lowest quintile of intake ($P = 0.0002$). A statistically significant inverse association was observed for both tofu and other soy products, but not for soy milk. Again, for the maternal data, risk also decreased with increased dry legume intake but was not related to fresh legume consumption (Table 3). Further analysis stratified by usual adult soyfood consumption showed that the pattern of adolescent soyfood intake and breast cancer risk was relatively unaffected by adult consumption (data not shown).

Discussion

Soyfoods are rich in isoflavones, primarily genistein and daidzein, that show potential as cancer-protective agents (8). Various anticancer effects of isoflavonoids have been demonstrated in vitro and in animal experiments, including inhibition of tumor formation and tumor cell growth stimulated by growth factors (9) and inhibition of DNA topoisomerase I and II (3),
proteases (14), tyrosine kinases (3), inositol phosphate (15), and angiogenesis (3). Isoflavones may also affect breast cancer and other hormone-related cancers by competing with endogenous estrogens in the binding of estrogen receptors and nuclear type II estrogen-binding sites as well as by increasing the synthesis of sex hormone-binding globulin (lowering biological availability of sex hormones), inhibiting 17β-hydroxysteroid dehydrogenases [reducing estrogen synthesis (3, 16)], and increasing the clearance of steroids from the circulation (8). In addition, isoflavones possess other chemopreventive characteristics, such as antioxidation, antivirus, antibacteria, and immune enhancement (17, 18). It has been documented that genistein inhibits both estrogen- and growth factor-stimulated proliferation of human breast cancer cells (9). Administration of soyfoods or isoflavones to rats reduces the number of mammary tumors (3, 4, 19, 20).

An inverse association between soyfood consumption and breast cancer has also been suggested from population studies, both ecological/cross-sectional studies (8, 3) and analytic studies (6, 7, 21–23). Incidence of breast cancer has been low in China and Japan, where consumption of soyfoods is much higher than that in the United States (1), although some increases in consumption rates have been described recently (24).

Table 2 Soy food and other dietary intake during adolescence and risk of breast cancer, The Shanghai Breast Cancer Study, 1996–1998

| Soy foods (total) | 5.4 | 1.00 | 0.75 (0.60–0.93) | 0.69 (0.55–0.87) | 0.69 (0.55–0.86) | 0.51 (0.40–0.65) | <0.01 |
| Soy food intake was converted to soy protein equivalence (tofu, 6.2%; soy milk, 1.8%; and soy products other than tofu, 24.72%); Refs. 33–35. | 0.01 |

study, however, was not designed to evaluate the effect of soyfoods, and soyfood intake ascertainment was incomplete. The median soy protein intake among control women from Shanghai in the earlier study was 3.5 grams/day based primarily on intake of tofu, soy milk, and vegetarian chicken, whereas in the current study, the median soy protein intake in the usual adult diet was 10.3 grams/day. The median intake of soy protein from soy milk and tofu in the current study was 1.0 gram/day and 2.0 grams/day, respectively, accounting for only one-third of the total soy protein intake and close to the intakes reported in the earlier Chinese study. Cohort studies among Japanese, Japanese-American, and Caucasian-American women have provided some evidence that soyfoods may reduce the risk of breast cancer (21–23), although a recent prospective study in Japan failed to find any protective effect (27). A lower urine level of isoflavonoids among breast cancer patients compared with controls has also been reported previously (28, 29), including a study in Shanghai (29). To our knowledge, no epidemiological study has specifically evaluated the effect of soyfood intake during adolescence, a period when breast tissue is most sensitive to environmental stimuli, on subsequent risk of breast cancer.

The mammary primordium arises from solid terminal epithelial buds that branch during adolescence into a tree-like system of ducts (10). The hollowing of the TEBs occurs by extensive tissue remodeling and cell elimination. An alteration in tissue remodeling by changes in rates of cell proliferation or cell death could cause incomplete hollowing of TEBs, which in turn could result in an increase in ductal cells, a population of cells known to be susceptible to carcinogenic transformation (11). Animal studies have shown that mammary tissue is espe-
Commonly consumed dry beans are soy bean seeds, mung beans, and red beans.

Table 3 Soy food and other dietary intake during adolescence and risk of breast cancer, The Shanghai Breast Cancer Study, 1996–1998

<table>
<thead>
<tr>
<th></th>
<th>Q1 (low)</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
<th>Q5</th>
<th>Trend test P</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Premenopausal women (952 cases and 990 controls)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soy foods (total)</td>
<td>1.00</td>
<td>0.75 (0.57–1.00)</td>
<td>0.72 (0.54–0.96)</td>
<td>0.64 (0.48–0.85)</td>
<td>0.53 (0.39–0.72)</td>
<td><0.01</td>
</tr>
<tr>
<td>Bean curd (tofu)</td>
<td>1.00</td>
<td>0.73 (0.56–0.92)</td>
<td>0.87 (0.64–1.20)</td>
<td>0.60 (0.45–0.79)</td>
<td>0.79 (0.58–1.08)</td>
<td>0.02</td>
</tr>
<tr>
<td>Soy milk</td>
<td>1.00</td>
<td>0.67 (0.55–0.82)</td>
<td>0.67 (0.55–0.82)</td>
<td>0.60 (0.45–0.79)</td>
<td>0.79 (0.58–1.08)</td>
<td><0.01</td>
</tr>
<tr>
<td>Soy products other than tofu</td>
<td>1.00</td>
<td>0.90 (0.65–1.23)</td>
<td>0.76 (0.52–1.10)</td>
<td>0.68 (0.48–0.96)</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Fresh legumes<sup>d</sup></td>
<td>1.00</td>
<td>1.04 (0.76–1.41)</td>
<td>1.04 (0.82–1.33)</td>
<td>0.86 (0.64–1.15)</td>
<td>0.96 (0.72–1.29)</td>
<td>0.51</td>
</tr>
<tr>
<td>Dried beans<sup>e</sup></td>
<td>1.00</td>
<td>0.91 (0.72–1.15)</td>
<td>0.85 (0.66–1.10)</td>
<td>0.77 (0.57–1.05)</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>Soy foods (total)</td>
<td>1.00</td>
<td>0.69 (0.48–1.01)</td>
<td>0.65 (0.44–0.97)</td>
<td>0.79 (0.54–1.16)</td>
<td>0.49 (0.33–0.74)</td>
<td><0.01</td>
</tr>
<tr>
<td>Bean curd (tofu)</td>
<td>1.00</td>
<td>1.10 (0.77–1.57)</td>
<td>0.89 (0.58–1.38)</td>
<td>0.82 (0.56–1.19)</td>
<td>0.62 (0.41–0.93)</td>
<td>0.01</td>
</tr>
<tr>
<td>Soy milk</td>
<td>1.00</td>
<td>0.98 (0.73–1.32)</td>
<td>0.98 (0.73–1.32)</td>
<td>0.98 (0.73–1.32)</td>
<td>0.89</td>
<td></td>
</tr>
<tr>
<td>Soy products other than tofu</td>
<td>1.00</td>
<td>0.77 (0.53–1.12)</td>
<td>0.93 (0.57–1.53)</td>
<td>0.62 (0.41–0.94)</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Fresh legumes<sup>d</sup></td>
<td>1.00</td>
<td>0.77 (0.50–1.19)</td>
<td>0.92 (0.65–1.30)</td>
<td>0.83 (0.55–1.27)</td>
<td>0.96 (0.67–1.39)</td>
<td>0.82</td>
</tr>
<tr>
<td>Dried beans<sup>e</sup></td>
<td>1.00</td>
<td>0.70 (0.50–0.97)</td>
<td>0.67 (0.46–0.95)</td>
<td>0.76 (0.53–1.08)</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>B. Postmenopausal women (501 cases and 562 controls)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soy foods (total)</td>
<td>1.00</td>
<td>0.70 (0.45–1.09)</td>
<td>0.59 (0.32–1.07)</td>
<td>0.60 (0.37–0.99)</td>
<td>0.35 (0.21–0.60)</td>
<td><0.01</td>
</tr>
<tr>
<td>Bean curd (tofu)</td>
<td>1.00</td>
<td>1.08 (0.70–1.65)</td>
<td>0.72 (0.41–1.27)</td>
<td>0.52 (0.31–0.85)</td>
<td>0.65 (0.37–1.17)</td>
<td><0.01</td>
</tr>
<tr>
<td>Soy milk</td>
<td>1.00</td>
<td>0.89 (0.61–1.31)</td>
<td>0.89 (0.61–1.31)</td>
<td>0.89 (0.61–1.31)</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>Soy products other than tofu</td>
<td>1.00</td>
<td>1.10 (0.67–1.79)</td>
<td>0.72 (0.45–1.17)</td>
<td>0.79 (0.46–1.33)</td>
<td>0.44 (0.25–0.79)</td>
<td><0.01</td>
</tr>
<tr>
<td>Fresh legumes<sup>d</sup></td>
<td>1.00</td>
<td>0.52 (0.30–0.92)</td>
<td>0.88 (0.57–1.38)</td>
<td>1.05 (0.63–1.75)</td>
<td>0.67 (0.40–1.12)</td>
<td>0.55</td>
</tr>
<tr>
<td>Dried beans<sup>e</sup></td>
<td>1.00</td>
<td>0.94 (0.62–1.44)</td>
<td>0.73 (0.46–1.16)</td>
<td>0.63 (0.40–1.01)</td>
<td>0.04</td>
<td></td>
</tr>
</tbody>
</table>

^a ORs were compared to the lowest quintile of intake and adjusted for intake level of rice and wheat products, age, education, family history of breast cancer, history of breast fibroadenoma, WHR, age at menarche, physical activity, ever had live birth, menopausal status, and age at menopause.

^b Ever versus never for analyses of foods rarely consumed.

^c Tertile distribution of intake for analyses of foods when a large number of subjects did not eat the foods.

^d Commonly consumed fresh legumes include peas, string beans, kidney beans, and, less commonly consumed fresh legumes include soy beans.

^e Commonly consumed dry beans are soy bean seeds, mung beans, and red beans.
not related to the risk of breast cancer. Dried legumes (mixed with soybeans, mung beans, and other beans) were less strongly associated with the risk of breast cancer than pure soyfood items (total soyfoods, bean curd, soy milk, and soy products other than tofu). We also found that both self-reported and maternally reported soyfood intake were related to breast cancer in a dose-response pattern. Finally, the findings were consistent for all single soyfood items and existed for both pre- and postmenopausal women. These observations all argue against the possibility of a chance finding.

In summary, in the Shanghai Breast Cancer Study undertaken in a traditionally high soyfood-consuming population, we found that adolescent soyfood intake was inversely associated with the risk of breast cancer in adult life. The dose-response relationship, the biological plausibility, the specificity of the association, and the consistent relationship across a variety of strata and between data from mothers and daughters all strongly suggest an etiological association. Our finding suggests that a substantial difference in breast cancer incidence between Asian and Caucasian women and increasing breast cancer incidence among Asian-Americans may be explained, at least in part, by soyfood intake during adolescence. Our study again emphasizes the importance of initiating cancer intervention programs early in life (31).

References
Soyfood Intake during Adolescence and Subsequent Risk of Breast Cancer among Chinese Women

Xiao Ou Shu, Fan Jin, Qi Dai, et al.