Edward S. Peters, Karl T. Kelsey, John K. Wiencke, Sonyeung Park, Pengchin Chen, Rei Miike, and Margaret R. Wrensch

Departments of Cancer Cell Biology [E. S. P., K. T. K., S. P.], Oral Epidemiology [E. S. P.], and Oral Medicine [E. S. P.], Harvard University, Boston, Massachusetts 02115, and Department of Epidemiology and Biostatistics, University of California, San Francisco, California 94143

Introduction

Although various carcinogenic agents (e.g., ionizing radiation, polycyclic aromatic hydrocarbons, N-nitroso compounds, dietary nitrosamines, organic solvents, unfiltered cigarettes, and pesticides) have been suggested as possible risk factors for brain cancer, none have emerged as dominant factors. The etiology of most of brain tumors continues to be poorly understood (1). A genetically based difference in susceptibility to carcinogens may play a role in the development of glioma.

Few studies have examined the relationship between genetic polymorphisms of metabolizing enzymes and glioma risk. The finding by Trizna et al. (2) of a suggestive, but nonsignificant, elevation in glioma risk for the rapid \textit{NAT2} acetylator genotype suggested that further exploration of this polymorphism might be worthwhile. If aromatic/heterocyclic amines are associated with gliomas, then functional variations in enzymes that metabolize these carcinogens might modify the risk for glioma among exposed individuals. To evaluate this possibility, we examined \textit{NAT2} and \textit{NQO1} polymorphisms in conjunction with smoking history in adult glioma cases and controls.

Materials and Methods

The 159 cases and 163 controls in this study have been described elsewhere (3, 4). DNA samples, obtained from whole blood, were genotyped for \textit{NAT2} with a modification of the PCR-RFLP method of Bell et al. (5) that allows classification of individuals as slow versus rapid acetylators. \textit{NQO1} has been demonstrated to be polymorphic (C-to-T transition at bp 609), and a 3-fold decrease in reductase activity is associated with this allelic variant. Genotyping for \textit{NQO1} used the PCR method described previously by Wiencke et al. (6). Unadjusted ORs and 95% CIs comparing \textit{NAT2} and \textit{NQO1} genotypes and smoking histories of white cases and controls were estimated with unconditional logistic regression analyses. Analyses of smoking history were stratified by genotypes. Analyses also were adjusted for subjects’ age and gender.

Results

For \textit{NAT2}, 63% of cases and 54% of controls had the slow acetylator genotype, but this difference was not significantly different ($P > 0.05$). Overall, in both unadjusted and adjusted comparisons, cases were somewhat (40–50%, respectively) more likely than controls to have the \textit{NAT2} slow acetylator genotype (Table 1). Among subjects with fast acetylator genotypes, cases appeared to be more likely than controls to have smoked unfiltered cigarettes, but these results were not significant, and the CI was very wide (case-control OR for having smoked unfiltered cigarettes \textit{versus} never smoked, 3.6; 95% CI, 0.4–36.9). The ORs for smoking filtered cigarettes \textit{versus} never smoking and the ORs for smoking either filtered or unfiltered cigarettes among those subjects with \textit{NAT2} slow acetylator genotypes were all very close to 1. Looked at another way, among subjects who never smoked or who smoked filtered cigarettes, cases were somewhat more likely than controls to have slow acetylator genotypes, whereas among subjects who smoked unfiltered cigarettes, cases were less likely than controls to have slow acetylator genotypes. Almost identical percentages of cases (32%) and controls (34%) were heterozygous for the \textit{NQO1} variant, whereas 4% of both cases and controls were homozygous for this variant. Importantly, all of these findings were compatible with chance.

Statistical Power. With 54% of controls being \textit{NAT2} slow acetylators and 37% of controls being \textit{NQO1} variants, we had ~90% power to detect ~2-fold ORs. Thus, we cannot entirely rule out the possibility of a modest association of \textit{NAT2} slow acetylator genotype and glioma.

Study Limitations. Although adequate power was available to detect an association between genotype and glioma, power may have been insufficient to detect an interaction between \textit{NAT2} and smoking with glioma. In addition, exposure misclassification, selection, and recall bias are concerns in case-control studies and may have influenced the observed results.

In conclusion, these results provide no support for an association of \textit{NQO1} variant genotype and glioma. The results also do not support the hypothesis suggested by Trizna et al. (2) that the \textit{NAT2} fast acetylator genotype might increase the risk of gliomas. Trizna et al. (2) reported a 1.6-fold (0.84–3.17) elevation in risk for the \textit{NAT2} fast acetylator genotype from a case-control study of 90 cases and 90 controls. In our somewhat larger study, we observed the opposite, a 1.4-fold OR of glioma with the \textit{NAT2} slow acetylator genotype. Although some of the discrepancy between the two studies may be attributable to variations in genotype frequencies in the control populations,
that variation is unlikely to be solely responsible for the magnitude of difference between the two studies.

Acknowledgments

We thank Dr. Nancy Mueller for helpful comments on the manuscript.

References

Table 1 Gender, age, smoking history, and NAT2 and NQO1 genotypes among white glioma cases and controls in the San Francisco Area Adult Glioma Study, 1991–1995

A. Risk Factor

<table>
<thead>
<tr>
<th>Genotyped population</th>
<th>Case (n = 159)</th>
<th>Control (n = 163)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>39%</td>
<td>46%</td>
</tr>
<tr>
<td>Male</td>
<td>61%</td>
<td>54%</td>
</tr>
<tr>
<td>Age (yr, mean)</td>
<td>48.2</td>
<td>53.4</td>
</tr>
<tr>
<td>Cigarette smoking (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>46%</td>
<td>45%</td>
</tr>
<tr>
<td>Former</td>
<td>37%</td>
<td>41%</td>
</tr>
<tr>
<td>Current</td>
<td>14%</td>
<td>14%</td>
</tr>
</tbody>
</table>

B. Genotype

<table>
<thead>
<tr>
<th>Cases</th>
<th>Controls</th>
<th>OR (95% CI)</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n (%)</td>
<td>n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAT2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rapid</td>
<td>58 (37)</td>
<td>72 (46)</td>
<td>a</td>
</tr>
<tr>
<td>Slow</td>
<td>98 (63)</td>
<td>83 (54)</td>
<td>1.5 (0.9–2.3)</td>
</tr>
<tr>
<td>NQO1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wild type</td>
<td>100 (64)</td>
<td>102 (63)</td>
<td>a</td>
</tr>
<tr>
<td>Reduced activity</td>
<td>57 (36)</td>
<td>61 (37)</td>
<td>1.0 (0.6–1.5)</td>
</tr>
</tbody>
</table>

a Referent group.

b Not every person was genotyped for each polymorphism.

c OR and 95% CI.
d OR and 95% CI adjusted for age, gender, and ever smoking.
NAT2 and NQO1 Polymorphisms Are Not Associated with Adult Glioma

Cancer Epidemiol Biomarkers Prev 2001;10:151-152.

Updated version
Access the most recent version of this article at:
http://cebp.aacrjournals.org/content/10/2/151

Cited articles
This article cites 6 articles, 3 of which you can access for free at:
http://cebp.aacrjournals.org/content/10/2/151.full.html#ref-list-1

Citing articles
This article has been cited by 5 HighWire-hosted articles. Access the articles at:
/content/10/2/151.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.