Letters to the Editor


Sarah Lewis, Paul Brennan,† Fredrik Nyberg, Wolfgang Ahrens, Vali Constantinescu, Anush Mukeria, Simone Benhamou, Halina Baturu-Gabryel, Irene Briske-Hohlfeld, Lorenzo Simonato, Ana Menezes, and Paolo Boffetta

International Agency for Research on Cancer, 69008 Lyon, France [S. L., P. B., P. Bo]; Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden [F. N.]; Bremen Institute for Prevention Research, Bremen, Germany [W. A.]; Institute of Public Health, Bucharest, Romania [V. C.]; Institute of Carcinogenesis, Cancer Research Center, Moscow, Russia [A. M.]; INSERM, Villejuif, France [S. B.]; Pneumological Hospital, Poznan, Poland [H. B-G.]; GSF Institute for Epidemiology, Munich, Germany [B-H.]; University of Padua, Padua, Italy [L. S.]; and Federal University of Rio Grande do Sul, Petolas, Brazil [A. M.]

Spitz et al. (1) have recently described a protective effect of dietary isothiocyanate intake for lung cancer risk in a United States population among current, but not among former, smokers. This protective effect was greater in individuals who were null for both GSTM1 and GSTT1 genotypes compared with subjects who had positive alleles for both genes, but there appeared to be no interaction between dietary isothiocyanate intake and GSTM1 genotype alone. London et al. (2) have recently shown a protective effect of a high serum isothiocyanate level for lung cancer risk, primarily among GSTM1-null individuals, in a Chinese population.

Isothiocyanates, which have been shown to inhibit tumorigenesis in animal models, are non-nutrient compounds found in cruciferous vegetables. GST-catalyzed conjugation of glutathione with isothiocyanates promotes the elimination of these compounds (3). Among individuals who are genetically deficient with respect to the GST enzymes, elimination of isothiocyanates is likely to be less rapid, which may enhance their chemopreventive effect. This could represent an important example of a gene-environment interaction in human carcinogenesis.

Using data from a multicenter study of lung cancer among nonsmokers (4), we have examined associations between GSTM1 genotypes, cruciferous vegetable intake and lung cancer risk. GST genotyping data were available for 122 lung cancer cases and 123 controls. Subjects recruited at nine different centers throughout Europe and South America were included in the analysis. The majority of lung cancer cases (86.1%) and controls (71.5%) were female. Among cases, age ranged from 18 to 92 years with a mean of 64 years, whereas in controls, these figures were 23–85 years and 59 years, respectively. Age, sex, and center were adjusted for in the analysis. Cruciferous vegetable intake (including broccoli, cabbage, and cauliflower) was measured using a food frequency questionnaire, and consumption was classified as follows: low = less than one portion per month (n = 105), medium = between one portion per month and one portion per week (n = 90), and high = greater than one portion per week (n = 50).

In this population, GSTM1 null was found to be a risk factor for lung cancer (OR, 1.53; 95% CI, 0.87–2.71), which is in agreement with previous findings (5). Overall, a high consumption of cruciferous vegetables appeared to decrease lung cancer risk in this population (OR, 0.64; 95% CI, 0.25–1.67; Table 1). The protective effect of cruciferous vegetable consumption was observed in both GSTM1-positive and -null individuals, although a weak dose-response relationship was apparent only in GSTM1-null individuals (Table 1).

Our data support the finding of Spitz et al. that isothiocyanates appear to reduce lung cancer risk. However, whereas Spitz et al. found a protective effect among current smokers only, we found this among nonsmokers. Also in our study, there was dose-response relationship between cruciferous vegetable intake and lung cancer risk among GSTM1-null individuals but not among GSTM1 wild-type individuals. These findings support the hypothesis that isothiocyanates may be more important in lung cancer prevention among those individuals who can eliminate these compounds less rapidly, although the strength of our findings is limited by the sample size of the study. Much larger studies will be required to accurately measure the modest effects of genes, such as GSTM1, and identify the extent of gene-environment interactions.

Table 1: Lung cancer risk associated with cruciferous vegetable consumption among nonsmokers, stratified by GSTM1 genotype

<table>
<thead>
<tr>
<th>Cases/controls</th>
<th>Cruciferous vegetable consumption OR (95% CI)</th>
<th>P for trend</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
<td>Medium</td>
</tr>
<tr>
<td>GSTM1-positive</td>
<td>57/67</td>
<td>1</td>
</tr>
<tr>
<td>GSTM1-null</td>
<td>62/53</td>
<td>1</td>
</tr>
</tbody>
</table>

*ORs and 95% CIs were adjusted for age (four categories), sex, and center.
References


Sarah Lewis, Paul Brennan, Fredrik Nyberg, et al.


Updated version Access the most recent version of this article at:
http://cebp.aacrjournals.org/content/10/10/1105

Cited articles This article cites 4 articles, 3 of which you can access for free at:
http://cebp.aacrjournals.org/content/10/10/1105.full#ref-list-1

Citing articles This article has been cited by 1 HighWire-hosted articles. Access the articles at:
http://cebp.aacrjournals.org/content/10/10/1105.full#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.